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.  Feinaeuglea,∗,  P.  Gregorčič b, D.J.  Heatha,  B.  Millsa, R.W.  Easona

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000, Ljubljana, Slovenia
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We  have  studied  the  transfer  regimes  and  dynamics  of polymer  flyers  from  laser-induced  backward
transfer  (LIBT)  via  time-resolved  shadowgraphy.  Imaging  of  the flyer  ejection  phase  of  LIBT  of  3.8  �m
and  6.4  �m thick  SU-8 polymer  films  on  germanium  and  silicon  carrier  substrates  was  performed  over
a  time  delay  range  of  1.4–16.4  �s  after  arrival  of the  laser  pulse.  The  experiments  were  carried  out  with
150  fs,  800  nm  pulses  spatially  shaped  using  a digital  micromirror  device,  and  laser  fluences  of  up  to
3.5  J/cm2 while  images  were recorded  via  a CCD  camera  and  a spark  discharge  lamp.  Velocities  of  flyers
aser-induced backward transfer
ime-resolved shadowgraphy
emtosecond laser-induced
icro-processing

olymer thin films
dditive manufacturing

found  in  the  range  of  6–20  m/s,  and the  intact  and  fragmented  ejection  regimes,  were  a function  of  donor
thickness,  carrier  and  laser  fluence.  The  crater  profile  of  the  donor  after  transfer  and  the  resulting  flyer
profile  indicated  different  flyer ejection  modes  for Si  carriers  and  high  fluences.  The  results  contribute  to
better  understanding  of  the  LIBT  process,  and  help  to determine  experimental  parameters  for  successful
LIBT  of  intact  deposits.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
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. Introduction

Additive methods for the microfabrication of devices have
ecently gained interest over conventional techniques due to their
ersatility, simplicity and resulting high speed of fabrication [1–3].
mong these, laser-based techniques are a promising way to enable
evice printing in a contactless fashion with demonstrated micron-
cale resolution. A unique advantage is that these methods allow
he deposition of materials that not only have a specific structural
ole, but also have electronic, photonic or even biomedical func-
ionality.

In particular, laser-induced forward transfer (LIFT) has proven
ts capability to allow manufacturing of a wide range of materi-
ls, such as metals [4], ceramics, semiconductors, superconductors
5], 2D materials and structures for e.g. MEMS [6], waveguides
7], biomedical sensors [8] or thermoelectric generators [9]. More

ecently, the transfer of silver pastes [10,11], 3-dimensional micro-
bjects [12,13] and metal vias [14] has shown the potential of LIFT
or microfabrication. During LIFT (e.g. with a transparent donor),

∗ Corresponding author. Current address: Chair of Applied Laser Technology,
aboratory of Mechanical Automation and Mechatronics, Faculty of Engineering
echnology, University of Twente, Enschede, The Netherlands.

E-mail addresses: m.feinaeugle@utwente.nl (M.  Feinaeugle),
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shown schematically in Fig. 1a, a pulsed laser beam is focussed or
imaged at the interface between a transparent carrier substrate and
a sandwich of thin films, consisting of an absorbing material and
the donor. As a consequence of the absorbed laser energy, a small
volume of the donor is ejected and transferred onto a receiver sub-
strate which is located parallel to the donor surface. In some cases,
the donor itself acts as an absorber and no additional interfacial
layer is required. The spacing between the donor and receiver is
typically in the few to tens of micrometres range.

The minimum feature sizes of structures fabricated via LIFT
is mainly limited to optical resolutions for congruent transfer of
devices [15,16]. However, for molten transfer, structures that are
smaller than the diffraction-limited size of the incident laser pulse
have been demonstrated [17,18]. Specifically for the fabrication of
those structures, laser-induced backward transfer (LIBT) [19] has
produced submicron-structures with high repeatability which may
prove to be an advantageous alternative to LIFT for specific appli-
cations [20,21]. During LIBT, shown schematically in Fig. 1b, the
receiver whose absorption is low in comparison with the carrier
is situated in the path of the laser, while the donor is coated on
a (bulk) carrier substrate. The incident laser pulse energy that is
either absorbed in the donor or- for partially transparent donors-

the carrier leads to the transfer of a volume of the donor in a
direction opposite to that of the laser beam path, hence the term
‘backward’.

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 2. Setup for time-resolved imaging of LIBT. The laser pulses with Gaussian beam
ig. 1. Schematic side-view of (a) laser-induced forward transfer (LIFT) and (b) laser-
nduced backward transfer (LIBT) for a transparent donor.

In comparison with LIFT, LIBT has different requirements and
estrictions concerning the transparency of the receiver and the
onor, but the possibility to use a bulk carrier substrate might prove
dvantageous for certain applications. These advantages can also
e used for transfer of other materials as demonstrated in previous
ork, where metals [22–25], oxides [25,26], CrSi2 [27], TiN [24]

nd corroded surfaces [28] have been the subject of studies of LIBT
ethods.
Recently, we have demonstrated that the use of a bulk sub-

trate facilitates the imprint-based laser-induced fabrication of
ub-micron-size structures via LIBT of solid polymers [29].

While LIFT has been the object of many studies to date, much
ess effort has been put into fully understanding and exploiting the
rocess of LIBT. To help in predicting the outcome of an experiment
ia LIBT e.g. with a new material, imaging [24] and simulation [30]
f the process can be useful tools. Also, as LIBT is closely related to
he processes of laser lift-off [31], laser cleaning, laser scribing, or
ven ablation [32], studying LIBT could also aid in understanding
hese processes. The main difference with respect to previous work
s that for our experiments, we are interested in the ejected material
eing in an intact state, and that its shape is geometrically similar
o the incoming spatial shape of the laser pulse.

To improve the effectiveness of LIBT, factors such as low flyer
elocity and reduced shock generation play a major role in trans-
erring a flyer in an intact state [33]. An experimental time-resolved
maging study could therefore support future efforts to model the
IBT process to optimise experimental conditions, and to under-
tand the advantages and limitations of this technique. Previously,
he femtosecond laser ablation of silica grown on top of silicon was
nvestigated in the first ∼10 ns after the arrival of the laser pulse
34]. In a different study, a simple model of silica on a Ag substrate
as simulated on a picosecond timescale [30].

While the focus of those studies was on the observation of shock
nd film dynamics in the first nanoseconds after the arrival of the
aser pulse, here, we have examined the dynamics of the emerging
yer and fragments on a microsecond scale to obtain experimental
arameters for LIBT of intact deposits.

In this study, we have imaged the LIBT process from an epoxy-
ased SU-8 polymer donor film from planar silicon and germanium
arriers via a femtosecond pulsed laser source. SU-8 is an example
f a transparent donor material that can be used for e.g. photonic or
icrofluidic devices. This polymer, once developed, has a relatively

igh chemical resistance, and has been previously used in micro-
pto-electro-mechanical systems (MOEMS). It is routinely used for
ithographic patterning on the micro- and nanoscale, and hence
eneficial for the creation of small structures. Silicon and Germa-
ium carriers were used as readily available bulk substrates that are
idely used in microfabrication of electronic and photonic devices,

hus for which a large number of microfabrication processes are

nown.

When using polymers as donor material, photophysical effects
s damage mechanisms need to be considered during transfer, and
hese mechanisms include photochemical decomposition, thermal
profile are homogenised to a top hat profile via a refractive beam shaper (BS). Laser
triggering, time-resolved imaging, DMD  mask display and beam attenuation are
controlled by a computer.

ablation, spallation and photopolymerisation of monomer chains
[35,36]. The use of short pulses and infrared wavelength decrease
the likelihood of damage via thermal effects or direct rupture of
polymeric bonds respectively, while multiphoton effects would
only be expected for the highest fluences used. At the same time,
thermal effects to the semiconductor carriers are expected to be
reduced with short laser pulses when compared to longer pulsed
laser sources, and this has further motivated our choice of laser
source for these experiments [37].

With the help of a time-resolved shadowgraphy setup, we have
recorded the position of the emerging flyer as a function of pulse
energy, donor thickness, carrier material, delay time after laser
pulse arrival, and beam intensity distribution. Shadowgraphy can
be used to determine the existence and position of particles and
flyer ejected from the donor surface and is also sensitive to changes
in the refractive index of the surrounding atmosphere, e.g. through
gradients in pressure or gaseous elements. Generally, shadowgra-
phy can be most readily performed with the presence of a receiver
to study impact and landing of the flyer, and the receiver’s inter-
action with pressure waves. Instead we  have chosen to study the
dynamics of the flyer ejection without receiver which is a case rel-
evant to the LIBT process as the velocity, integrity and orientation
of the flyer, and the possible creation of debris or shock can be
observed over a larger range than possible with a receiver in place.
In the following we refer to ‘transfer’ for the dynamics of flyer ejec-
tion and propagation for targets in a LIBT configuration as used
here. To allow a more direct comparison with the LIBT process,
we have briefly contrasted the results from shadowgraphy with
those of standard transfer experiments, where we have measured
the ratio of intact flyers found on a receiver to flyers imaged in an
intact state.

We will first introduce the experimental details and methods
of the time-resolved studies of LIBT. Then we present experimen-
tal results from varying time delay, laser fluence, donor thickness
and carrier. Further, we  will discuss the different observed trans-
fer regimes and the effects of experimental parameters on LIBT of
SU-8.

2. Experimental

The imaging of the LIBT process was carried out using the
setup shown in Fig. 2. It consisted of three different optical beam
lines, one for live imaging of the sample surface, one for laser-
induced transfer and the third one for time-resolved shadowgraph

imaging. Transfer was  induced via pulses from a Ti:sapphire laser
oscillator-amplifier system (Mira/Legend, Coherent) with a central
wavelength of 800 nm,  and pulse lengths of 150 fs. The maximum
pulse energy of 2 mJ  was attenuated with a continuously variable
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eutral density filter. The Gaussian intensity profile from the laser
as transformed into a top-hat intensity profile via a refractive

eam shaper (Pi-Shaper, AdlOptica). These laser pulses with top-
at profile then illuminated the surface of a 608 × 684 element
igital micromirror device (DLP3000, Texas Instruments) whose
irrors were actuated to form a dynamic intensity mask. To do

o, mirrors in the ‘on’ position directed light into the beam path
hown in Fig. 2, while mirrors in ‘off’ position steered the laser
ulses into a beam stop (not shown). The surface of the digital
icromirror device (DMD) displaying a user-specified mask was

maged and de-magnified at the interface between the donor and
arrier in the LIBT target with a 50× de-magnification microscope
bjective (Mitutoyo).

For sample positioning and focussing, the sample, illuminated
ith a white light source, is imaged continuously on a CMOS cam-

ra, whose image path is collinear to the laser beam path. More
etails on the setup and on the configuration of the DMD  for image
rojection can be found in previous work [38].

The laser-induced events above the sample surface were
ecorded via illumination from a white light spark discharge flash
amp (Nanolite KL-K, HSPS) with a pulse duration of 8 ns [39].
he flash lamp was placed at the focus of microscope objective L1
10× magnification, Leitz Wetzlar) used as a collimator. A second

icroscope objective L2 (50× magnification, Nikon) was  used to
oncentrate the illuminating light at the interaction area. The inter-
ction of the illuminating beams and the laser-induced objects or
ifferences in refractive indices were then observed as intensity
radients [40] on a CCD camera (scA1400–17 fm,  1.4 Mpx, Basler
G) equipped with a microscope objective L3. Depending on the
esolution required and the field of view, we used one of two  dif-
erent (20× and 100× magnification, Nikon) microscope objectives
3. Our setup therefore provided the following theoretical reso-
utions: 90 nm/pixel and 420 nm/pixel, while the field of view in
he direction of flyer movement equalled approximately 120 �m
nd 400 �m respectively. The excitation laser, flash lamp, shut-
er and the CCD camera were synchronised by a signal generator
Tektronix, AFG 3102) while the display of the DMD  image mask,
aser triggering and attenuation level were controlled by a com-
uter.

Following laser triggering, the signal generator caused the CCD
amera to be active for ∼20 ms  and at the same time actuated the
ash lamp at a chosen delay time with a minimum value of 1.4 �s. A
napshot was therefore taken after the chosen delay with an expo-
ure time of ∼8 ns. We  varied this delay during experiments over
he range between 1.4 �s and 16.4 �s with an estimated uncer-
ainty of 100 ns. For each delay a new area of the donor was selected,
o the data presented below consists of sequential flyers imaged at
ifferent delays but otherwise similar conditions. To reduce errors
ue to natural fluctuations in flyer behaviour, each set of similar
onditions was repeated at least five times. The delay was chosen

o show flyers travelling the full extent of the image frame visible
o the camera.

Fig. 3a shows a schematic of the imaging setup and the image
hown in Fig. 3b is a typical shadowgram recorded with the CCD

ig. 4. Time sequence of shadowgrams of flyers from a thick SU-8 donor on a Si carrier im
Fig. 3. (a) Schematic side-view of shadowgraphy imaging setup and (b) image frame
as  recorded by CCD camera and a 100× microscope objective.

camera where flyer and donor surface orientation appear at an
angle relative to each other as a result of camera perspective. The
contrast, brightness and gamma  values of the captured images were
modified to optimise visibility of the laser-induced events.

The LIBT targets (i.e. the donor-coated carrier) were fabricated
via spin-coating of SU-8 photoresist (Microchem) onto silicon and
germanium carrier substrates (300–600 �m thick). The germanium
carriers consisted of a 3 �m thick layer of Ge grown on a Si substrate.
Before spin-coating, the carriers were ultrasonically cleaned in
sequential baths of acetone, isopropanol and water for 30 min  and
subsequently dried by pressurised nitrogen. After coating, the LIBT
targets were baked on a hotplate for 3 min  ramping from 60 to 90 ◦C,
and the sample was  held at 90 ◦C for a further minute to solidify the
polymer and to remove any residual gamma-butyrolactone solvent
[41]. Final donor thicknesses were 3.8 �m (referred to later as ‘thin’)
and 6.4 �m (referred to as ‘thick’), measured with a mechanical
profiler. The variation of donor thickness measurement was in the
range of ±100 nm while the measurement error by the mechani-
cal profiler used was  estimated to be smaller than this variation.
The films were coated at spin speeds of 2000 rpm and 4000 rpm for
maximum accelerations of 300 rpm/s and a spin duration of 30 s.
The film thickness of a few microns was a typical thickness used in
SU-8 based MEOMS  and around the standard thickness for SU-8 5
used in lithography.

The targets were then cleaved in the centre for better imag-
ing of the central part of the donor to avoid shading by the thick
donor bead found at the perimeter of a spin-coated sample and
experiments were performed at least 100 �m away from the sam-
ple (donor) edges to avoid variation of material properties, such as
a reduced donor-carrier adhesion.

3. Results and discussion

3.1. Velocity of the flyer
In the first experiments we varied the delay between values of
1.4–10 �s between incidence of the laser pulse and recording of
the position of the flyer above the substrate. A sequence of images

aged with a 100 x microscope objective. The scale bar is 20 �m in all figures.
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Table 1
Intact flyer velocities for different carrier/donor combinations extracted from dis-
tance vs. delay data. The fluence values for the samples are shown in Fig. 5. The
temporal mean of the velocity is shown for different fluences and combinations of
donor and carrier.

Carrier/Donor (Fluence) Mean velocity [m/s]

Si/Thin SU-8 (0.84 J/cm2) 18.1 ± 2.1
Si/Thin SU-8 (1 J/cm2) 19.8 ± 2.3
Si/Thick SU-8 9.3 ± 2.8
Ge/Thin SU-8 13.5 ± 1.5
Ge/Thick SU-8 9.1 ± 5.4
ig. 5. Distance travelled by flyers for varying delay times from (a) Si and (b) Ge
arriers with thick and thin SU-8 donors. The error bar is the standard deviation at

 certain delay time.

aken for different delays at a fluence of 1.39 J/cm2 for flyers from
 thick SU-8 on silicon target are shown in Fig. 4.

A flyer emerges from the surface not as a cylindrical disc which
ould be the circular shape with top-hat spatial intensity projected
t the interface, but is slightly tapered and additionally features a
hin peripheral rim ripped out of the donor to result in a ‘saucer-
ike’ structure. Most of the shadowgraph images show two  bright
reas, one in the centre of the image and a second one in the crater
n the donor. The first spot originates from direct imaging of the
park gap illumination, and while the presence of this bright spot
n the image was  undesired, this geometry was used to maximise
yer illumination. The second spot is a consequence of scattering
f the laser pulse visible due to the long exposure time of the CCD
amera.

The image also reveals that the bottom side of the tilted flyer
arries some damage appearing in the central region of the flyer.
his damage, seen as dark spots within a flyer, occurred to some of
he flyers and was most likely caused by imperfections of the donor
r fluctuations of the laser pulse intensity due to imperfect optics
r laser output. As flyers were not collected, further evaluation of
his damage was not possible. The particles shown in Fig. 4b–d is
ebris which likely has its origin in the central damaged spot of the
yer.

Experiments were carried out just above flyer removal flu-
nce thresholds for the 3.8 �m and 6.4 �m thick films. For donors
n silicon these threshold fluences were between 0.80 J/cm2 and
.35 J/cm2 as a function of donor thickness. Germanium carriers
ad threshold fluences between 0.55 J/cm2 and 0.60 J/cm2. The dif-

erences in threshold fluences observed between experiments with
he different carrier substrates could be reduced to both the differ-
nt physical properties of the carrier or to the different adhesion of
onor on carrier, and further measurements of adhesion would be
equired to determine the effect of these properties.

The distance d travelled by the resulting intact flyers for an
mage taken after a specific delay is shown in Fig. 5.

Experiments for thin SU-8 on silicon were performed at fluences
ust above and at 20% higher than threshold for comparison to see
f there is a measurable influence of fluence on velocity. The higher
alue was chosen to be between the threshold and the fluence at
hich the likelihood of breaking up would increase dramatically.

he velocity v(t) of a flyer as a function of delay t as shown in Table 1
nd Fig. 6 was defined as:

(t) = d (t) −  d (t1)
t − t1

(1)
ith t1 the minimum delay (1.4 �s). From previous experiments, it
s expected that flyer ejection (occurring at time t0) is initiated on
he timescale of hundreds of nanoseconds after laser pulse arrival
nd is a function of fluence [42,43]. Generally, using short pulses
Fig. 6. Velocity as a function of delay time for (a) silicon and (b) germanium carriers
with thin (3.8 �m)  and thick (6.4 �m) SU-8 donors.

and higher fluences can decrease t0. However, the influence of
dynamic release layers (DRL) such as Au [44] is inconclusive, while
for a Triazene DRL [45], a thicker film can decrease t0 significantly as
compared to a thin DRL [43]. While the pressure of the surround-
ing atmosphere does have a large effect on propagation velocity,
no major influence on ejection time could be observed in literature
[33].

Resulting mean velocities for flyers were in the range of
9–20 m/s, and the lowest velocity recorded was 6 m/s. For both car-
riers, the thicker flyers had a lower velocity than the thin flyers. The
comparison of a thin flyer from a Si carrier in Table 1 shows slightly
higher velocities for a flyer ejected at 20% higher fluence but oth-
erwise similar conditions for the mean velocity. Fig. 5 also shows
that flyers ejected at higher fluence have always travelled further
at comparable delay times, hinting at a smaller flyer release time t0
for higher fluences. The velocities as a function of delay are plotted
in Fig. 6.

No indication of any deceleration, e.g. by drag, could be seen
in the velocity over the time delays studied. The flyer propagation
was assumed to be influenced by the deceleration through the sur-
rounding atmosphere as well as by the flyer rotation induced during
flyer ejection. Gravity acting in the opposite direction of travel was
neglected being several orders of magnitude smaller than drag from
the surrounding air at atmospheric pressure. The different flyer
velocities observed are crucial to estimate the outcome of a LIBT
experiment as a higher velocity increases the impact when landing
on a receiver.

3.2. Influence of laser fluence on flyer propagation

As observed in Fig. 5 for the thin donor films, distance travelled
in a specific time period increased for higher laser pulse energies
incident on the targets as seen earlier [46]. This relation was inves-

tigated in more detail by recording flyer propagation for a fixed
delay time but varying laser fluence for Ge and Si carriers. Fig. 7
shows the resulting behaviour for flyers from a thick SU-8 donor
and a Ge carrier.
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Fig. 7. Distance travelled by flyer for two delay times when varying incident pulse
fluence for a Ge carrier and a thick SU-8 donor film. The first data points at
∼400 mJ/cm2 show that no flyer had emerged from the donor.
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ig. 8. Distance travelled as a function of incident laser fluence for a flyer from a
hick SU-8 donor on Si carrier.

During this experiment only flyers up to a fluence of 0.9 J/cm2

nd 2.3 J/cm2 for Ge and Si carriers respectively were observed to be
n an intact state. For higher fluences, more than 90% of flyers were
ound to have fragmented. The distances plotted at larger fluences
how the distance travelled by the main fragments ejected from
he donor surface. Before breakup, the measured average veloci-
ies of the fastest flyers were 12.2 ± 7.7 m/s. The error found for
hese fastest flyers was relatively large and we assumed that the
ilt of some of the recorded flyers may  have contributed to their
eceleration. For a germanium carrier, all flyers ejected at a high
uence travel further, thus at a higher average velocity, than flyers
jected at a lower fluence close to threshold. The resulting linear
ncrease of velocity as a function of fluence was  in the range of
.023 ± 0.01 m/s  mJ−1 cm2 for flyers in an intact state.

A similar plot of distance over delay time from an experiment
ith silicon carriers is shown in Fig. 8. Here, the distance curves

re split at a fluence value of ∼1.8 J/cm2 into a ‘sawtooth’ function
ith positive gradients. The first part of the fitted sawtooth func-

ion (1.25–1.8 J/cm2), showing the distances of intact flyers, has a
radient of velocity of 0.014 ± 0.01 m/s  mJ−1 cm2. The velocity of

he fastest flyers here was 16.8 ± 4.6 m/s.

In the first part of the curve, distance increases monotonically.
owever, around 2.0–2.5 J/cm2, propagation is much lower than
xpected. Only for values of 3.5 J/cm2 is propagation again larger
Fig. 9. Crater diameter for varying fluence measured on two Si and Ge donors after
LIBT experiments for a thick SU-8 donor. The insets shows microscope images of
craters in the donor after transfer (for Si carrier). The scale bar of the insets is 25 �m.

than for flyers ejected at 1.8 J/cm2. Such behaviour would seem
to indicate a deceleration or a change of transfer regime for those
higher fluences. To further investigate this behaviour, we  have mea-
sured the diameter of the ablation craters in the donor films left
behind by the ejected flyer as shown in Fig. 9.

For a fixed image mask as used throughout this experiment, it
was expected that crater size would remain constant or increase
only slightly for increasing fluence due to areas in the perimeter
of the imaged mask feature, where intensity, decaying in an expo-
nential fashion due to imperfect imaging, exceeded the transfer
threshold, resulting in a larger flyer being ejected. However, Fig. 9
shows a local minimum in crater size for SU-8/Si targets at around
2.5 J/cm2 confirming that craters, and as a consequence flyers, do
not have a constant or linear increasing diameter.

The beam diameter at the donor-carrier interface was ∼20 �m,
estimated from microscope images of the donor damage at low flu-
ences. From Fig. 9 and previous experiments we  can see that the
flyer shape is much larger. During flyer release, the flyer shears off
additional neighbouring donor areas and thus results in an increase
in flyer diameter. Although an exact cause of the observed variation
in flyer diameter is difficult to confirm, we assumed that different
factors could contribute to the observed flyers shape distribution.
It had been observed earlier in polymers that higher impact veloci-
ties on polymer can lead to different failure modes [47]. Slow donor
loading would induce brittle fracture (tensile failure mode) while
fast loads would induce a transition to a ductile (failure) regime
where shear crack growth is preferred. Thus a fast ‘push’ could lead
to a different transfer regime preferring straight edges in crater and
resulting flyer. This different failure mechanism would then cause a
different amount of kinetic energy to be delivered to the flyer during
flyer ejection or on the other hand the donor accelerated at dif-
ferent rates would suffer from these different failure regimes. The
effect of varying crater size and velocity was not seen in the exper-
iments with Ge carrier and hence could be a consequence of the
relatively high fluences required for the Si carriers. In general, the
failure mode determines the resulting flyer edge quality and shape.
Additionally, the increased fluence could increase the likelihood
of non-linear multiphoton absorption, shock-induced changes [48]
or even heating of the flyer and hence its change in global or local
mechanical properties explaining the observed changes in flyer and

crater shape.

From our experiments here, we  can also estimate the influ-
ence of the receiver by determining the fluence window FW,  in
which flyers are either seen intact for shadowgraphy experiments,
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Fig. 10. Shadowgraph image of flyers ejected from a thick SU-8 film on a silicon carrier ejected at (a) 1.39 J/cm2, (b) 1.69 J/cm2, and (c) 2.05 J/cm2 respectively. Delay times
were  3.4 �s. Images were taken via a 100× objective. The scale bar is 20 �m in all figures.
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ith  a CCD mounted 20 x objective and delay was  2.4 �s. The scale bar is 50 �m in 

r intact for LIBT experiments printing onto a receiver. This results
n a transfer window defined as:

W = Fu − Fth

Fth
(2)

ith Fu and Fth the respective maximum and minimum fluence
or which flyers are ejected or deposited in intact state. FW for
hick flyers on Ge and Si was approximately 60%. For compari-
on, in an experiment using a polydimethylsiloxane-coated glass
eceiver and a thin SU-8 donor from a Si carrier (flyers in transfer
ere not imaged), FW was ∼16%, compared to ∼38% for shadowg-

aphy experiments, for flyers ejected from the donor. This indicates
hat the influence of the receiver contributes to a reduction of this
ransfer window by approximately a factor of two  (≈38%/16%). As
hown previously for LIFT, the reduction of transfer window can be
xplained by shock waves reflecting off the surface of the receiver

33] or destruction due to impact on the receiver [49]. Further, it

ay  as well be possible that the receiver might cause aberrations
eading to imperfect imaging of the object at the image plane which
n turn would increase the likelihood of fractured flyer ejection.
luences were (a) 1.39 J/cm2, (b) 2.05 J/cm2, and (c) 3.46 J/cm2. Images were taken
res.

3.3. Transfer regimes of flyers

The influence of laser pulse energy, and thus fluence delivered to
the LIBT target, on the velocity and shape of a flyer, is further shown
in images of flyer ejection events. Fig. 10 shows shadowgraphs
taken with a 100× objective from a thin SU-8 on silicon target at
delays of 3.4 �s. For the selected fluences of 1.39 J/cm2, 1.69 J/cm2

and 2.05 J/cm2 propagation distance is described approximately by
the data presented in Fig. 8.

The flyers with the same conditions as for the one shown in
Fig. 10c have a different profile compared to the other flyers con-
firming the data of crater diameter shown in Fig. 9. They have a
smaller diameter and appear to miss the thin rim seen in the other
flyers of Fig. 10. However, they only propagate to a distance similar
to a flyer ejected at a fluence of 1.69 J/cm2, hence not all the excess
energy deposited into the target is used for acceleration of the flyer
in a direction away from the donor.

When using an objective with 20× magnification with a thick
SU-8/Si target, debris distribution and fast particles can be better
detected due to the larger field of view. Fig. 11 shows transfer events

2 2 2
for low (1.39 J/cm ), medium (2.05 J/cm ) and high (3.46 J/cm )
fluences. Note that for these medium fluences, intact flyers only
occurred in ∼50% of transfer events and were never seen for high
fluences.
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Fig. 12. Distance versus delay for thick SU-8/Si and different transfer regimes. Note
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hat for the two higher fluences, distance values are shown for the main fragments,
hile for the lowest fluence, only intact flyers are shown.

For low fluences in more than 90% of the cases, the flyer was
ntact. As shown in Fig. 11, small amounts of debris presumably
rom the perimeter of the sheared flyer are visible. As the flyer
ppears to be slightly smaller than shown in Fig. 9, we  assumed
hat one of the sources of such debris is the perimeter of the flyer.
or medium fluences as for the flyer in Fig. 11b, disintegration of
he main flyer is apparent at a distance of around 50 �m,  the num-
er of small particles or debris has increased, and at the centre of
he image, an additional compact and relatively large feature can be
een which is connected with a long string of material to the lower,
ain flyer. Such a string or jet is an indicator of molten material

nd could explain the saturation of the main flyer velocity caused
y a change in donor material phase and hence different mechan-

cal properties [50]. Also, melting of the carrier at these relatively
arge fluences is likely to occur.

For high fluences, the molten features are still visible in the
pper part of the image together with a large quantity of small par-
icles. The main flyer is seen to have broken up in several pieces in a
ypical fashion for non-intact transfer. For the two  higher fluences,
een near the crater, residual light emission is visible, originating
rom the incident laser pulse as the relatively long camera exposure
ime includes both laser pulse and flash lamp pulse events.

Fig. 12 emphasises further the different transfer regimes by
howing propagation distances of intact flyers and large fragments
f the main flyer. The largest extracted velocities for fragments seen
t high fluences was ∼40 m/s.

. Conclusions

We  have demonstrated the time-resolved shadowgraph imag-
ng of thin transparent epoxy-based polymer SU-8 films via
emtosecond laser-induced backward transfer. Flyer velocity,
ransfer regimes and intact transfer window were determined
or different thicknesses (3.4 �m and 6.8 �m),  delay times
1.4–16.4 �s) and carrier substrates of silicon and germanium for
uences of 0.5–3.5 J/cm2. Observed velocities were in the range
f 6–20 m/s  for different donor thicknesses, carriers and laser
uences. We have seen that flyer velocity is a function of laser
uence with a gradient of 0.023 ± 0.01 m/s  mJ−1 cm2 for Ge and
.014 ± 0.01 m/s  mJ−1 cm2 for Si carriers in intact state and flyers

emoved around threshold fluence. However, for Si carriers and
arge fluences, the crater found in the donor, the flyer shape and
educed flyer propagation velocity indicate a different flyer failure
egime than for low fluences. Also, we have not detected any shock

[
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waves which are known to compromise flyer integrity during LIFT
experiments. The receiver has shown to be responsible for a reduc-
tion of the fluence transfer window by approximately a factor of
two. Among the tested carriers, due to their relatively low ejec-
tion threshold a germanium carrier is preferred over the silicon
one. These findings are helpful for better understanding of the LIBT
process, for e.g. future modelling, and to determine experimental
parameters for LIBT printing intact deposits.

Acknowledgements

This work was funded under the UK Engineering and Physical
Sciences Research Council (EPSRC) Grants Nos. EP/L022230/1 and
EP/J008052/1. The authors also would like to acknowledge financial
support from the state budget by the Slovenian Research Agency
[Programme No. P2-0392]. Goran Mashanovich is kindly acknowl-
edged for providing germanium samples. The data for this work
are accessible through the University of Southampton Institutional
Research Repository (DOI: 10.5258/SOTON/398008).

References

[1] M.  Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing
technologies, Int. J. Adv. Manuf. Technol. 67 (2013) 1721–1754, http://dx.doi.
org/10.1007/s00170-012-4605-2.

[2] Y. Zhang, C. Liu, D. Whalley, Direct-write techniques for maskless production
of  microelectronics: A review of current state-of-the-art technologies, in:
2009 Int. Conf. Electron. Packag. Technol. High Density Packag., IEEE, 2009, pp.
497–503, http://dx.doi.org/10.1109/ICEPT.2009.5270702.

[3]  A. del Campo, E. Arzt, Fabrication approaches for generating complex micro-
and nanopatterns on polymeric surfaces, Chem. Rev. 108 (2008) 911–945,
http://dx.doi.org/10.1021/cr050018y.

[4] J.A. Grant-Jacob, B. Mills, M.  Feinaeugle, C.L. Sones, G. Oosterhuis, M.B.
Hoppenbrouwers, R.W. Eason, Micron-scale copper wires printed using
femtosecond laser-induced forward transfer with automated donor
replenishment, Opt. Mater. Express 3 (2013) 747, http://dx.doi.org/10.1364/
OME.3.000747.

[5] C.B. Arnold, P. Serra, A. Piqué, Laser direct-write techniques for printing of
complex materials, MRS  Bull. 32 (2007) 23–32, http://dx.doi.org/10.1557/
mrs2007.11.

[6] A.J. Birnbaum, H. Kim, N.A. Charipar, A. Pique, Laser printing of multi-layered
polymer/metal heterostructures for electronic and MEMS devices, Appl. Phys.
A:  Mater. Sci. Process. 99 (2010) 711–716, http://dx.doi.org/10.1007/s00339-
010-5743-8.

[7] C.L. Sones, K.S. Kaur, P. Ganguly, D.P. Banks, Y.J. Ying, R.W. Eason, S. Mailis,
Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of
photonic devices, Appl. Phys. A 101 (2010) 333–338, http://dx.doi.org/10.
1007/s00339-010-5827-5.

[8] P. Serra, M.  Colina, J.M. Fernandez-Pradas, L. Sevilla, J.L. Morenza, Preparation
of  functional DNA microarrays through laser-induced forward transfer, Appl.
Phys. Lett. 85 (2004) 1639–1641, http://dx.doi.org/10.1063/1.1787614.

[9]  M.  Feinaeugle, C.L. Sones, E. Koukharenko, B. Gholipour, D.W. Hewak, R.W.
Eason, Laser-induced forward transfer of intact chalcogenide thin films:
resultant morphology and thermoelectric properties, Appl. Phys. A 112 (2013)
1073–1079, http://dx.doi.org/10.1007/s00339-012-7491-4.

10] D. Munoz-Martin, C.F. Brasz, Y. Chen, M.  Morales, C.B. Arnold, C. Molpeceres,
Laser-induced forward transfer of high-viscosity silver pastes, Appl. Surf. Sci.
366 (2016) 389–396, http://dx.doi.org/10.1016/j.apsusc.2016.01.029.

11] E. Breckenfeld, H. Kim, R.C.Y. Auyeung, N. Charipar, P. Serra, A. Pique,
Laser-induced forward transfer of silver nanopaste for microwave
interconnects, Appl. Surf. Sci. 331 (2015) 254–261, http://dx.doi.org/10.1016/
j.apsusc.2015.01.079.

12] M.  Zenou, Z. Kotler, Printing of metallic 3D micro-objects by laser induced
forward transfer, Opt. Express 24 (2016) 1431, http://dx.doi.org/10.1364/OE.
24.001431.

13] C.W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ‘t Veld, D. Lohse, Toward
3D  printing of pure metals by laser-induced forward transfer, Adv. Mater. 27
(2015) 4087–4092, http://dx.doi.org/10.1002/adma.201501058.

14] Bert Huis in ’t Veld, L. Overmeyer, M.  Schmidt, K. Wegener, A. Malshe, P.
Bartolo, Micro additive manufacturing using ultra short laser pulses, CIRP
Ann. – Manuf. Technol. 64 (2015) 701–724, http://dx.doi.org/10.1016/j.cirp.
2015.05.007.

15] D.J. Heath, M. Feinaeugle, J.A. Grant-Jacob, B. Mills, R.W. Eason, Dynamic
spatial pulse shaping via a digital micromirror device for patterned
(2015) 1129, http://dx.doi.org/10.1364/OME.5.001129.
16] J. Ihlemann, R. Weichenhain-Schriever, Patterned deposition of thin

SiOX-films by laser induced forward transfer, Thin Solid Films 550 (2014)
521–524, http://dx.doi.org/10.1016/j.tsf.2013.10.128.

dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1007/s00170-012-4605-2
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1109/ICEPT.2009.5270702
dx.doi.org/10.1021/cr050018y
dx.doi.org/10.1021/cr050018y
dx.doi.org/10.1021/cr050018y
dx.doi.org/10.1021/cr050018y
dx.doi.org/10.1021/cr050018y
dx.doi.org/10.1021/cr050018y
dx.doi.org/10.1021/cr050018y
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1364/OME.3.000747
dx.doi.org/10.1557/mrs2007.11
dx.doi.org/10.1557/mrs2007.11
dx.doi.org/10.1557/mrs2007.11
dx.doi.org/10.1557/mrs2007.11
dx.doi.org/10.1557/mrs2007.11
dx.doi.org/10.1557/mrs2007.11
dx.doi.org/10.1557/mrs2007.11
dx.doi.org/10.1557/mrs2007.11
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5743-8
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1007/s00339-010-5827-5
dx.doi.org/10.1063/1.1787614
dx.doi.org/10.1063/1.1787614
dx.doi.org/10.1063/1.1787614
dx.doi.org/10.1063/1.1787614
dx.doi.org/10.1063/1.1787614
dx.doi.org/10.1063/1.1787614
dx.doi.org/10.1063/1.1787614
dx.doi.org/10.1063/1.1787614
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1007/s00339-012-7491-4
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2016.01.029
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1016/j.apsusc.2015.01.079
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1364/OE.24.001431
dx.doi.org/10.1002/adma.201501058
dx.doi.org/10.1002/adma.201501058
dx.doi.org/10.1002/adma.201501058
dx.doi.org/10.1002/adma.201501058
dx.doi.org/10.1002/adma.201501058
dx.doi.org/10.1002/adma.201501058
dx.doi.org/10.1002/adma.201501058
dx.doi.org/10.1002/adma.201501058
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1016/j.cirp.2015.05.007
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1364/OME.5.001129
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128
dx.doi.org/10.1016/j.tsf.2013.10.128


1 rface 

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

http://dx.doi.org/10.1007/s00339-014-8360-0.
[50] T. Kumada, H. Akagi, R. Itakura, T. Otobe, M.  Nishikino, A. Yokoyama,

Non-thermal effects on femtosecond laser ablation of polymers extracted
from the oscillation of time-resolved reflectivity, Appl Phys. Lett. 106 (2015)
221605, http://dx.doi.org/10.1063/1.4921854.
238 M. Feinaeugle et al. / Applied Su

17] A.I. Kuznetsov, A.B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W.  Cheng, A.
Ovsianikov, B.N. Chichkov, Laser-induced transfer of metallic nanodroplets for
plasmonics and metamaterial applications, J. Opt. Soc. Am.  B 26 (2009) B130,
http://dx.doi.org/10.1364/josab.26.00b130.

18] D.P. Banks, C. Grivas, J.D. Mills, R.W. Eason, I. Zergioti, Nanodroplets deposited
in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,
Appl Phys. Lett. 89 (2006) 193107, http://dx.doi.org/10.1063/1.2386921.

19] M.L. Levene, R.D. Scott, B.W. Siryj, Material transfer recording, Appl. Opt. 9
(1970) 2260, http://dx.doi.org/10.1364/AO.9.002260.

20] U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Laser printing of
silicon nanoparticles with resonant optical electric and magnetic responses,
Nat. Commun. 5 (2014) 3402, http://dx.doi.org/10.1038/ncomms4402.

21] A.I. Kuznetsov, J. Koch, B.N. Chichkov, Laser-induced backward transfer of
gold nanodroplets, Opt. Express 17 (2009) 18820, http://dx.doi.org/10.1364/
OE.17.018820.

22] A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Laser-induced jet formation
and droplet ejection from thin metal films, Appl. Phys. A 106 (2012) 479–487,
http://dx.doi.org/10.1007/s00339-011-6747-8.

23] B. Liu, Z. Hu, Y. Che, Ultrafast pulsed laser micro-deposition printing on
transparent media, in: Micromach, Micromachining and Microfabrication
Process Technology XV (2010) 759002–759006, http://dx.doi.org/10.1117/12.
842806.

24] S.G. Koulikov, D.D. Dlott, Ultrafast microscopy of laser ablation of refractory
materials: ultra low threshold stress-induced ablation, J. Photochem.
Photobiol. A Chem. 145 (2001) 183–194, http://dx.doi.org/10.1016/S1010-
6030(01)00581-0.

25] P. Papakonstantinou, N.A. Vainos, C. Fotakis, Microfabrication by UV
femtosecond laser ablation of Pt, Cr and indium oxide thin films, Appl. Surf.
Sci.  151 (1999) 159–170, http://dx.doi.org/10.1016/S0169-4332(99)00299-8.

26]  H. Sakata, S. Chakraborty, M.  Wakaki, Patterning of Bi2O3 films using
laser-induced forward and backward transfer techniques, Microelectron. Eng.
96 (2012) 56–60, http://dx.doi.org/10.1016/j.mee.2012.02.002.

27]  A. Luches, S.A. Mulenko, V.P. Veiko, A.P. Caricato, V. Chuiko, Y.V. Kudryavtsev,
A.V. Lopato, A.A. Petrov, F. Romano, D. Valerini, Laser-assisted synthesis of
semiconductor chromium disilicide films, Appl. Surf. Sci. 253 (2007)
6512–6516, http://dx.doi.org/10.1016/j.apsusc.2007.01.023.

28] V.P. Veiko, E. a. Shakhno, V.N. Smirnov, G.D. Nikishin, S.P. Rho, Laser ablation
and local deposition: physical mechanisms and application for
decontamination of radioactive surfaces, J. Korean Phys. Soc. 51 (2007) 345,
http://dx.doi.org/10.3938/jkps.51.345.

29] M. Feinaeugle, D.J. Heath, B. Mills, J.A. Grant-Jacob, G.Z. Mashanovich, R.W.
Eason, Laser-induced backward transfer of nanoimprinted polymer elements,
Appl. Phys. A. 122 (2016) 398, http://dx.doi.org/10.1007/s00339-016-9953-6.

30] E.T. Karim, M.  Shugaev, C. Wu,  Z. Lin, R.F. Hainsey, L.V. Zhigilei, Atomistic
simulation study of short pulse laser interactions with a metal target under
conditions of spatial confinement by a transparent overlayer, J. Appl. Phys.
115 (2014) 183501, http://dx.doi.org/10.1063/1.4872245.

31] D.A. Zayarnyi, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Rudenko, E.A.
Drozdova, S.B. Odinokov, Specific features of single-pulse femtosecond laser
micron and submicron ablation of a thin silver film coated with a
micron-thick photoresist layer, Quantum. Electron. 45 (2015) 462–466,
http://dx.doi.org/10.1070/QE2015v045n05ABEH015788.

32] C. Zhang, J. Yao, S. Lan, V.A. Trofimov, T.M. Lysak, Effects of plasma
confinement on the femtosecond laser ablation of silicon, Opt. Commun. 308
(2013) 54–63, http://dx.doi.org/10.1016/j.optcom.2013.06.052.

33] R. Fardel, M.  Nagel, F. Nuesch, T. Lippert, A. Wokaun, Laser-induced forward
transfer of organic LED building blocks studied by time-resolved

shadowgraphy, J. Phys. Chem. C. 114 (2010) 5617–5636, http://dx.doi.org/10.
1021/jp907387q.

34] J.P. McDonald, J.A. Nees, S.M. Yalisove, Pump-probe imaging of femtosecond
pulsed laser ablation of silicon with thermally grown oxide films, J. Appl.
Phys. 102 (2007), http://dx.doi.org/10.1063/1.2778740.
Science 396 (2017) 1231–1238

35] P.E. Dyer, Excimer laser polymer ablation: twenty years on, Appl. Phys. A:
Mater. Sci. Process. 77 (2003) 167–173, http://dx.doi.org/10.1007/s00339-
003-2137-1.

36] M.  Malinauskas, M.  Farsari, A. Piskarskas, S. Juodkazis, Ultrafast laser
nanostructuring of photopolymers: a decade of advances, Phys. Rep. 533
(2013) 1–31, http://dx.doi.org/10.1016/j.physrep.2013.07.005.

37] B.N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, A. Tunnermann,
Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys.
A:  Materi. Sci. Process. 63 (1996) 109–115.

38] B. Mills, M.  Feinaeugle, C.L. Sones, N. Rizvi, R.W. Eason, Sub-micron-scale
femtosecond laser ablation using a digital micromirror device, J. Micromech.
Microeng. 23 (2013) 35005, http://dx.doi.org/10.1088/0960-1317/23/3/
035005.
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