Solving XOR problem with a multilayer perceptron
Neural Networks course (practical examples) © 2012 Primoz Potocnik
PROBLEM DESCRIPTION: 4 clusters of data (A,B,C,D) are defined in a 2-dimensional input space. (A,C) and (B,D) clusters represent XOR classification problem. The task is to define a neural network for solving the XOR problem.
Contents
Define 4 clusters of input data
close all, clear all, clc, format compact % number of samples of each class K = 100; % define 4 clusters of input data q = .6; % offset of classes A = [rand(1,K)-q; rand(1,K)+q]; B = [rand(1,K)+q; rand(1,K)+q]; C = [rand(1,K)+q; rand(1,K)-q]; D = [rand(1,K)-q; rand(1,K)-q]; % plot clusters figure(1) plot(A(1,:),A(2,:),'k+') hold on grid on plot(B(1,:),B(2,:),'bd') plot(C(1,:),C(2,:),'k+') plot(D(1,:),D(2,:),'bd') % text labels for clusters text(.5-q,.5+2*q,'Class A') text(.5+q,.5+2*q,'Class B') text(.5+q,.5-2*q,'Class A') text(.5-q,.5-2*q,'Class B')
Define output coding for XOR problem
% encode clusters a and c as one class, and b and d as another class a = -1; % a | b c = -1; % ------- b = 1; % d | c d = 1; %
Prepare inputs & outputs for network training
% define inputs (combine samples from all four classes) P = [A B C D]; % define targets T = [repmat(a,1,length(A)) repmat(b,1,length(B)) ... repmat(c,1,length(C)) repmat(d,1,length(D)) ]; % view inputs |outputs %[P' T']
Create and train a multilayer perceptron
% create a neural network net = feedforwardnet([5 3]); % train net net.divideParam.trainRatio = 1; % training set [%] net.divideParam.valRatio = 0; % validation set [%] net.divideParam.testRatio = 0; % test set [%] % train a neural network [net,tr,Y,E] = train(net,P,T); % show network view(net)
plot targets and network response to see how good the network learns the data
figure(2) plot(T','linewidth',2) hold on plot(Y','r--') grid on legend('Targets','Network response','location','best') ylim([-1.25 1.25])
Plot classification result for the complete input space
% generate a grid span = -1:.005:2; [P1,P2] = meshgrid(span,span); pp = [P1(:) P2(:)]'; % simulate neural network on a grid aa = net(pp); % translate output into [-1,1] %aa = -1 + 2*(aa>0); % plot classification regions figure(1) mesh(P1,P2,reshape(aa,length(span),length(span))-5); colormap cool view(2)