Custom networks
Neural Networks course (practical examples) © 2012 Primoz Potocnik
PROBLEM DESCRIPTION: Create and view custom neural networks
Contents
Define one sample: inputs and outputs
close all, clear all, clc, format compact inputs = [1:6]' % input vector (6-dimensional pattern) outputs = [1 2]' % corresponding target output vector
inputs = 1 2 3 4 5 6 outputs = 1 2
Define and custom network
% create network net = network( ... 1, ... % numInputs, number of inputs, 2, ... % numLayers, number of layers [1; 0], ... % biasConnect, numLayers-by-1 Boolean vector, [1; 0], ... % inputConnect, numLayers-by-numInputs Boolean matrix, [0 0; 1 0], ... % layerConnect, numLayers-by-numLayers Boolean matrix [0 1] ... % outputConnect, 1-by-numLayers Boolean vector ); % View network structure view(net);
Define topology and transfer function
% number of hidden layer neurons net.layers{1}.size = 5; % hidden layer transfer function net.layers{1}.transferFcn = 'logsig'; view(net);
Configure network
net = configure(net,inputs,outputs); view(net);
Train net and calculate neuron output
% initial network response without training initial_output = net(inputs) % network training net.trainFcn = 'trainlm'; net.performFcn = 'mse'; net = train(net,inputs,outputs); % network response after training final_output = net(inputs)
initial_output = 0 0 final_output = 1.0000 2.0000