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Abstract  

Support vector machines (SVMs) are a set of related supervised learning algorithm 
developed by vladimir vapnik in the mid 90's for classification and regression.It is a new 
generation learning algorithms based on recent advances in statistical learning theory, and 
applied to large number of real-world applications, such as text categorization and hand-
written character recognition. The elegance and the rigorous mathematical foundations from 
optimization and statistical learning theory have propelled SVMs to the very forefront of the 
machine learning field within the last decade. 

In this paper we will see a method  for appling SVM learning algorisim for data clasification 
and regression purpose. 
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1. Introduction 

Support Vector Machines, are supervised learning machines based on statistical learning 
theory that can be used for pattern recognition and regression. Statistical learning theory can 
identify rather precisely the factors that need to be taken into account to learn successfully 
certain simple types of algorithms, however, real-world applications usually need more 
complex models and algorithms (such as neural networks), that makes them much harder to 
analyse theoretically. SVMs can be seen as lying at the intersection of learning theory and 
practice. They construct models that are complex enough (containing a large class of neural 
networks for instance) and yet that are simple enough to be analysed mathematically. This is 
because an SVM can be seen as a linear algorithm in a high-dimensional space . 
 
In this document, we will primarily concentrate on Support Vector Machines as used in 
pattern Recognition and function approximation. In the first section we will introduce pattern 
recognition and hyperplane classifiers, simple linear machines on which SVMs are based. We 
will then proceed to see how SVMs are able to go beyond the limitations of linear learning 
machines by introducing the kernel function, which paves the way to find a nonlinear decision 
function , in this section we will see different kind of kernels and parameter selection. Finally, 
we will see regression. 
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2. Pattern Recognition and Hyperplane Classifiers 

In pattern recognition we are given training data of the form 

                                   (x1,y1), .........,(xm,ym) ∈ ܴn× {−1,1} , 

that is n–dimensional patterns (vectors) xi and their labels yi. A label with the value of +1 
denotes that the vector  is classified to class +1 and a label of −1 denotes that the vector is part 
of class −1.We thus try to find a function f(x) = y : ܴn → {+1,−1} that apart from correctly 
classifying the patterns in the training data (a relatively simple task), correctly classifies 
unseen patterns too.This is called generalisation. 
 
 
It is imperative that we restrict the class of functions that our machine can learn, otherwise 
learning the underlying function is impossible. It is for this reason that SVMs are based on the 
class of hyperplanes 

                                       w.x + b=0 ,  w∈ ܴn  , b ∈ ܴ 

Where the vector w defines a direction perpendicular to a hyperplane while varing the value 
of b move the hyperplane parallel to itself (figure 1). Which basically divide the input space 
into two: one part containing vectors of the class −1 and the other containing those that are 
part of class +1 (see Figure 1). If there exists such a hyperplane, the data is said to be linearly 
separable. To find the class of a particular vector x, we use the following decision function 

                                      f(x) = sign(w · x + b) 

 

  

 

 

                       

               

 

 

 

 

 

                     Fig. 1. A separating hyperplanes  (w, b) for a two dimensional(2D) training set. 
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2.1 The Optimal Hyperplane 

As we can see from the right hand side of figure 1, ther are  more than one hyperplane that 
correctly classifies the training examples. So the qeustion is which of the linear separator is 
optimal and how can we get this opitimal separtor? 
 
As you can see from figuere 2 below, it has been shown that the hyperplane that guarantees 
the best generalisation performance is the one with the maximal margin of separation between 
the two classes , ଶ

‖ܟ‖
 . This type of hyperplane is known as the optimal or maximal margin 

hyperplane and is unique.                  
                                           Support vectors 

 

 

 

 

 

 

 

 

                Fig. 2. A maximal margin hyperplane with its support vectors  

To calculate the margin, two parallel hyperplanes are constructed, one on each side of the 
separating hyperplane (figure 2), which are "pushed up against" the two data sets. Intuitively, 
a good separation is achieved by the hyperplane that has the largest distance to the 
neighboring datapoints of both classes, since in general the larger the margin the better the 
generalization error of the classifier. 

Assume we are given a set of S of point of xi ∈ In with i=1,2,3...m. each point xi belongs to 
either of two classes and thus given a level yi ∈ {-1,1}. The goal is to establish the equation of 
hyperplane which separates the positive from the negative examples (a “separating 
hyperplane”) while maximizing the minimum distance between either of the two classes and 
the hyperplane. For the linearly separable case, the support vector algorithm simply looks for 
the separating hyperplane with largest margin. This can be formulated as follows:  
 
                          w.xi + b ≥ 1      for yi =1                               

                                                                                (1) 
                          w.xi + b ≤ -1     for yi =-1 
 
These can be combined into one set of inequalities: 
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                        yi(w.xi +b)-1 ≥ 0  i                                                                                      (2) 

the pair (w,b) define a hyperplane of equation 

                         w.x + b = 0 

named separating hyperplane.The quantity ଶ
‖ܟ‖

 which measures the distance between the two 
class in the direction of w is called margin. 

ଵ
‖ܟ‖

 is the lower bound the distance between the point xi  and the separating hyperplane (w,xi). 

So given a linearly separable set S, the optimal separable hyperplane is the separating 
hyperplane which maximize the distance of the closese point of S. 

Since the distance of the closest point equals to ଵ
‖ܟ‖

 the optimal separable hyperplane can be 

regards as the solution of the problem of maximizing subjected to constaints (2), i.e. 

      Mimimizing  ‖ܟ‖ଶ
ଶ

 

      Subjected to:  

                           yi(w.xi +b)-1 ≥ 0   

Thus we can find the pair of hyperplanes which gives the maximum margin by minimizing 
 subject to constraints (2).Thus we expect the solution for a typical two dimensional case 2‖ܟ‖
to have the form shown in Figure 2 . Those training points for which the equality in Eq. (2) 
holds (i.e. those which wind up lying on one of the hyperplanes w.x + b=1 or w.x + b= -1), 
and whose removal would change the solution found, are called support vectors; they are 
indicated in Figure 2 . 
 
The above constraint problem can be solved by using method of lagrangian multipiers. There 
are two reasons for doing this. The first is that the constraints in (2) will be replaced by 
constraints on theLagrange multipliers themselves, which will be much easier to handle. The 
second is that in this reformulation of the problem, the training data will only appear (in the 
actual training and test algorithms) in the form of dot products between vectors. This is a 
crucial property which will allow us to generalize the procedure to the nonlinear case. 
 
Thus, we introduce positive Lagrange multipliers αi, i=1,2,...,m, one for each of the inequality 
constraints (2). Recall that the rule is that for constraints of the form ci  ≥ ¸0, the 
constraint equations are multiplied by positive Lagrange multipliers and subtracted from  the 
objective function, to form the Lagrangian. For equality constraints, the Lagrange multipliers 
are unconstrained. This gives Lagrangian: 
               

      L=ଵ
ଶ

∑ – 2‖ܟ‖ αiyi(ܑܠ. ܟ + b)௠
௜ୀଵ  +∑ ௠݅ߙ

௜ୀଵ                                                                         (3) 
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Now this is a convex quadratic programming problem,so the solution of the problem is 
equvalent to determning the saddle points of of the above lagrangian. 
 

డ௅
డ௕

= ∑ ݅ߙ݅ݕ = 0௠
௜ୀଵ                                                                                                                                                                         ( 4 ) 

డ௅
డ௪

= ∑  - ܟ ܑܠ݅ݕ݅ߙ = 0௠
௜ୀଵ   

W=∑ ௠ܑܠ݅ݕ݅ߙ
௜ୀଵ                                                                                                                                                                                    ( 5 ) 

If we Substitute equation (4) and (5) into equation 3 , we get 

L(ߙ) = ∑ ݅ߙ −  ଵ
ଶ

௠
௜ୀଵ ∑ .ܑܠ݆ݕ݅ݕ݆ߙ݅ߙ ௠ܒܠ

௜,௝                                                                                    (6) 

The new problem is called dual formulation of our first primal problem (equation 3). It has the 
property that the maximum of L, subject to constraints હ ≥ 0 , occurs at the same values of  
w, b and ߙ , as the minimum of L , subjected to constraints  
 

 yi ( w.xi +b)-1≥0 . 

so we can formulated the dual problem as 

Maximizing   L(ߙ) = ∑ ݅ߙ −  ଵ
ଶ

௠
௜ୀଵ ∑ .ܑܠ݆ݕ݅ݕ݆ߙ݅ߙ ௠ܒܠ

௜,௝  

Subjected to  ∑ ݅ߙ݅ݕ = 0௠
௜ୀଵ  

ߙ                        ≥ 0 

 Note that the only ݅ߙ that can be non zero in equation (6) are those for which the constarints 
in (2) are satisfied with equality sign.The corrosponding point xi ,termed support vectors,are 
the points of S closes to the optimal separt hyperplane see figure 3 for geometrical 
interpretation .  

So given the parameter w ,the parameter b can be obtain as: 

                       b = yi - w.xi 

Therefore , the problem of classifing a new data point x is now simply solved by computing 

                       sign( ∑ ௠݅ܠ݅ݕ݅ߙ
௜ୀଵ .x  + b ) 

where xi  is suppor vector. 
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                         Figure 3 geometrical interpretation of α 

 

As we saw till now basic  linear learning machines are only suitable for linearly separable 
problems. But real world applications often require a more expressive hypothesis space than 
linear functions can provide.  
 

So how can we manage if the two classes are contain like oulier , noise or some kinde of error 
and can not be separated by linear clasifier? In the follpwing section we will give answer for 
this qeustion. 

2.2 Soft Margin Classifier 

If the training set  not linearly separable, the standard approach is to allow the fat decision 
margin to make a few mistakes (some points - outliers or noisy examples - are inside or on the 
wrong side of the margin) see figure 4. 

 

                                      Figure 4 soft margin classifier 
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We then pay a cost for each misclassified example, which depends on how far it is from 
meeting the margin requirement given in Equation (2). To implement this, we introduce slack 
variablesi . Slack variables ξi can be added to allow misclassification of difficult or noisy 
examples, resulting margin called soft margin. 

A non-zero value for all i allows xi to not meet the margin requirement at a cost proportional 
to the value of  i. So the condition for the optimal hyper-plane (equation 2) can be relaxed by 
including i: 

yi (w.xi +b) ≥1 - i                                                                                                                  ( 7 ) 

if the point xi satisfies iniquality to (2) ,then i  is zero and the above equation reduce to 
equation (2). Instead if x does not satisfiey iniquality in equation (2),  the term i  is subtract 
from the right side of 2 to obtain the equation (7). The generalized OSH(optimal separable 
hyperplane) is regards as the solution to: 

minimizing ଵ
ଶ

∑C + 2‖ݓ‖ ௠
௜ୀଵ i                                                                                                 (8) 

subjected to  yi (w.xi +b) ≥1 - i   

  ≥ 0 

The term ∑ ௠
௜ୀଵ i  can be thought of as some measure of amount of misclassicication. In other 

word the term  ∑ ௠
௜ୀଵ i  makes the OSH  less sensitive to the presence of outliers in the 

training set. Here C is a regularization parameter that controls the trade-off between 
maximizing the margin and minimizing the training error. Small C tends to emphasize the 
margin while ignoring the outliers in the training data, while large C may tend to overfit the 
training data. 

 If we follow similar steps As We did for linear separable case we can see the dual problem is 
identical to separable case. And its Lagrangian Dual Problem formulation is: 

Maximizing L(ߙ) = ∑ ݅ߙ −  ଵ
ଶ

௠
௜ୀଵ ∑ .ܑܠ݆ݕ݅ݕ݆ߙ݅ߙ ௠ܒܠ

௜,௝  

Subjected to: 

෍ ݅ߙ݅ݕ = 0                                                                                                    
௠

௜ୀଵ

                                            

0 ≤ αi ≤C 

This is very similar to the optimization problem in the linear separable case, except that there 
is an upper bound C on αi   now. 
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2.3. Nonlinear kernels 

Till now we saw data sets that are linearly separable(with some noise) . But what are we 
going to do if the datasets are to hard to separate linearly? 

Linear learning machines (such as the hyperplane classifier) have limited computational 
power and thus limited real-world value. In general, complex real-world applications require a 
learning machine with much more expressive power. 

In most cases real world problems produce datasets which are hard to do linear separtion in 
inpute space. Fortunatly ,we can  extend the linear sepration theory  to nonlinear separating 
surfaces by mapping the input points into feature points and looking for the OSH in the 
crosponding future space (cortes and vapnik 1995). 

If x  ∈  In  is an input point ,we let ϕ(x) be the corresponding feature point with ϕ a mapping 
from In  to certain space Z called feature space . Clearly ,an OSH in Z corresponds a 
nonlinear separating surafce in inpute space (figure 5). 

    input space                                                                           future space 

Figure 5 projecting data that is not linearly separable into a higher dimensional space can 
make it linearly separable 

 

We have alraedy notice in previous section  in SVM formulation ,the training data only 
appear in the form of the dot products  xi.xj  i.e. the optimal hyperplane classifier uses only 
dot products between vectors in input space. And the same is true in the decision function. In 
feature space this will translate to ϕ(xi). ϕ(xj). 

Φ: In  → Z                          

Clearly, this is very computationally expensive, especially if the mapping is to a high-
dimensional space.But many litrature show as kernel function can be used to accomplish the 
same result in a very simple and efficient way. 

A kernel is a function k(xi, xj) that given two vectors in input space, returns the dot product of 
their images in feature space 
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K(xi. xj)= ϕ(xi). ϕ(xj)                                                                                                             ( 9 ) 

So by computing the dot product directly using a kernel function, one avoid the mapping ϕ(x). 
This is desirable because Z has possibly infinite dimensions and ϕ(x) can be tricky or 
impossible to compute. Using a kernel function, one need not explicitly know what ϕ(x) is. By 
using a kernel function, a SVM that operates in infinite dimensional space can be constructed 
. And  the decision function will be : 

 f(ܠ) = ∑ ௠݅ܠ)ܭ݅ݕ݅ߙ
௜ୀଵ .xj)  + b                                                                                                (10) 

 Where for every new test data, the kernel function for each SV need to be recomputed. and A 
kernel function K is such a function that corresponds to a dot product in some expanded 
feature space. 

But what kind of kernel function is used? i.e. is there any constraint on the type of kernel 
function suitable for this task. For any kernel function suitable for SVM, there must exist at 
least one pair of {Z,ϕ}, such that Eqn.(9) is true, i.e. the kernel function represents the dot 
product of the data in Z.  

There are several different kernels, choosing one depends on the task at hand. The commonly 
used family of kernels are the following: 
 
Polynomail kernel 
 
K(xi , xj)=(1+ xi . xj)d 

 
results in a classifier that is a polynomial of degree p = 2, 3.... in the data. And p is user 
defined parameter. 

The polynomial kernel function is directional, i.e. the output depends on the direction of the 
two vectors in low-dimensional space. This is due to the dot product in the kernel. All vectors 
with the same direction will have a high output from the kernel. The magnitude of the output 
is also dependent on the magnitude of the vector xj.  

 
Radial basis kernel 
 
Commonly used radial basis kernel is gaussian kernel: 
 
K(xi , xj)=exp(− మ‖ܒܠିܑܠ‖

ଶఙమ  ) 
 
Gives a Gaussian radial basis function classifier. The output of the kernel is dependent on the 
Euclidean distance of xj  from xi (one of these will be the support vector and the other will be 
the testing data point). The support vector will be the centre of the RBF and  will determine 
the area of influence this support vector has over the data space and it is user defined 
parameter.   Larger value of  will give a smoother decision surface and more regular 
decision boundary. This is because an RBF with large  will allow a support vector to have a 
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strong influence over a larger area.   A larger -value will also reduce the number of support 
vectors. Since each support vector can cover a larger space, fewer are needed to define a 
boundary.                                                                                                 

 

Sigmoid kernel:  

 

With user define parameter   and . 

It is originated from neural net works and it has similar feature like MLP. 

Note: It does not satisfy equation (9) for all  and  values. 

Example: 

Lets see how ϕ look like for polynomial features. 

Take polynomial kernel with p=2 and  

Lets input be two dimentional vector x=[x1   x2];    

i.e.  K (xi,xj) = (1 + xi
Txj)2

,  

Need to show that K (xi,xj) = ϕ (xi) 
Tϕ(xj): 

K (xi,xj) = (1 + xi
Txj)2

, 

                = 1+ xi1
2xj1

2 + 2 xi1xj1
 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2  

            = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2   xj2

2  √2xj1  √2xj2]  

            = ϕ(xi) 
Tϕ(xj),    where ϕ(x) =  [1  x1

2  √2 x1x2   x2
2   √2x1  √2x2] 

 

2.4. Prametr Selection 

SVM has only two major parameters which are defined by the user. There is the trade-off 
between the margin width and the classification error (C), and the kernel function. Most 
kernel functions will also have a set of parameters. The trade-off between maximum margin 
and the classification error (during training) is defined by the value C in Eqn. (8). The value C 
is called the Error Penalty. A high error penalty will force the SVM training to avoid 
classification errors. A larger C will result in a larger search space for the QP optimizer. This 
generally increases the duration of the QP search. Other experiments with larger numbers of 
data points (1200) fail to converge when C is set higher than 1000. This is mainly due to 
numerical problems.  
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Selecting a specific kernel and parameters is usually done in a try-and-see manner. The 
followin Simple procedures help us to select these parameters: 

 Conduct simple scaling on the data 
 Consider RBF kernel , K(xi , xj)=exp(− మ‖ܒܠିܑܠ‖

ଶఙమ  ) 
 Use cross-validation to find the best parameter C and σ 
 Use the best C and  to train the whole training set 
 Test 

 
And we can summerize SVM  algorithm as follows: 
 

 1. Choose a kernel function  
 2. Choose a value for C  
 3. Solve the quadratic programming problem (many software packages available)  
 4. Construct the discriminant function from the support vectors  

   
Generally we can summerize what we saw till now by using the graph below 
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3 . Support vector Machine Regression (SVR) 

 Support Vector method can also be applied to the case of regression, maintaining all the main 
features that characterize the maximal margin algorithm. The model produced by support 
vector classification (as described above) only depends on a subset of the training data, 
because the cost function for building the model does not care about training points that lie 
beyond the margin. Analogously, the model produced by SVR only depends on a subset of the 
training data, because the cost function for building the model ignores any training data that 
are close (within a threshold ε) to the model prediction(see figure 7).  

The regression problem can be stated as: 

Suppose we are given training data {(xi, yi) i=1, 2,…., m)} , of input vectors xi associated 
targets yi, and the goal is to fit a function f(x)  which approximates the relation inherited 
between the data set points and it can be used later on to infer the output y  for a new input 
data point x. Any practical regression algorithm has a loss function L(y, f(x)), which describes 
how the estimated function deviated from the true one. Many forms for the loss function can 
be found in the literature. In this tutorial, Vapnik's loss function is used, which is known as"  
- insensitive loss function and defined as: 

 

  L(y, f(x)) = 

⎩
⎪
⎨

⎪
⎧

ݕ| ݂݅                                      0 − |(ݔ)݂ ≤ 

൫ݕ − ൯(ݔ)݂ −       ݐ݋ℎ݁݁ݏ݅ݓݎ                         

� 

 

 

 

 

 

 

 

           Figure 6 linear and non linear regressions with epsilon intensive band 

Where  > 0 is a predefined constant which controls the noise tolerance. With the - 
insensitive loss function, the goal is to find f(x) that has at most  deviation from the actually 
obtained targets yi for all training data. In other words, the regression algorithm does not care 
about errors as long as they are less than , but will not accept any deviation larger than this. 
In the same way as with classification approach there is motivation to seek and optimize the 
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generalization bounds given for regression. They relied on defining the loss function that 
ignores errors, which are situated within the certain distance of the true value. This type of 
function is often called – epsilon intensive – loss function. Figure (6) above shows an 
example of  linear and non linear regression function with – epsilon intensive – band. The 
variables measure the cost of the errors on the training points. These are zero for all points 
that are inside the band, figure (7).  

 

 

Figure 7 the soft margine loss setting correspondins for linear svm 

 

One of the most important ideas in Support Vector Classification and Regression cases is that 
presenting the solution by means of small subset of training points gives enormous 
computational advantages. Using the epsilon intensive loss function we ensure existence of 
the global minimum and at the same time optimization of reliable generalization bound. In 
general, SVM classification and regression are performed using a nonlinear kernel K(xi, xj). 

For simplicity of notation,  Lets see the case of linear functions f, taking the form 

f(x)= w.x + b                                                                                                                          (11) 

the regression problem can be written as a convex optimization problem: 

minimize  ଵ
ଶ

 2‖ܟ‖

subjected to   yi – (w.xi +b) ≤                                                                                                 (12) 

                       (w.xi +b) - yi  ≤  

The assumption in (12) was that such a function f actually exist that approximates all pairs 
(x,y) with  precision, or in other words, that the convex optimization problem is feasible. 
Sometimes however ,this may not be the case,or we also may want to allow for some errors. 
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Analogously to the soft margin loss function ,one can introduce slack variables i , *
i to cope 

with, otherwise infeasible constraints of the optimization problem (12). So our optimization 
problem becomes: 

Minimize  ଵ
ଶ

∑C + 2‖ݓ‖ (௠
௜ୀଵ i +i

*) 

Subject to  yi – (w.xi +b) ≤   + i                                                                                            (13) 

                    (w.xi +b) - yi  ≤   + i
*
  

                               i , i
*             ≥ 0 

The constant C > 0 determines the trade off between the flatness of f and the amount up to 
which deviations larger than  are tolerated. 

As shown in Fig.7, only the points outside the shaded region contribute to the cost insofar, as 
the deviations are penalized in a linear fashion. It turns out that in most cases the optimization 
problem Eq. (13) can be solved more easily in its dual formulation. Moreover, the dual 
formulation provides the key for extending SVM machine to nonlinear functions. Hence, a 
standard dualization method utilizing Lagrange multipliers will be described as follows. 
 

L=ଵ
ଶ

∑C + 2‖ݓ‖ (௠
௜ୀଵ i +i

*) – ∑ ௜(ߙ + ௜ −௠
௜ୀଵ  yi + .ܟ + iܠ b)  -  ∑ ௜ߙ

∗( + ୧
∗ +௠

௜ୀଵ  yi −
.ܟ + iܠ b) − ∑ (λ୧୧ + λ୧

∗୧
∗)୫

୧ୀଵ                                                                                              (14) 

Here L is the Lagrangian and αi, αi
* , λi , λi

* are Lagrange multipliers. Hence the dual 
variables in Eq. (7) have to satisfy positivity constraints: 
 
αi, αi

* , λi , λi
*  ≥ 0                                                                                                                   (15) 

 
It follows from the saddle point condition that the partial derivatives of L with respect to the 
primal variables (w, b ,i , i

*)  have to vanish for optimality. And if we follow similar steps  
like what we did for classifiction optimization problem above we end up with the dual 
optimization problem.  By deriving the dual problem we already eliminated the dual variables 
 λi , λi

*. Thus 
 
f(x)= ∑ ௜ߙ) −௠

௜ୀଵ ௜ߙ
.௜ݔ)(∗  ௝) + b                                                                                              (16)ݔ

 
Note that the complete algorithm can be described in terms of dot products between the data. 
Even when evaluating f(x) we need not compute w explicitly. These observations will come 
in handy for the formulation of a nonlinear extension. For new given x the crossponding value 
given by: 
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Only data for which     contribute.This occurs only if  

 

 

4. SVM  Vs  Neural network 

A Support Vector Machine (SVM) performs classification by constructing an N-dimensional 
hyperplane that optimally separates the data into two categories. SVM models are closely 
related to neural networks. In fact, a SVM model using a sigmoid kernel function is 
equivalent to a two-layer, perceptron neural network.  

Support Vector Machine (SVM) models are a close to classical multilayer perceptron neural 
networks. Using a kernel function, SVM’s are an alternative training method for polynomial, 
radial basis function and multi-layer perceptron classifiers in which the weights of the 
network are found by solving a quadratic programming problem with linear constraints, rather 
than by solving a non-convex, unconstrained minimization problem as in standard neural 
network training. Generally we can characterized the two as follows. 

Neural network 
 Universal approximation of continuous nonlinear functions 
 Learning from input-output patterns; either off-line or on-line learning 
 Parallel network architecture, multiple inputs and outputs 
  feedforward and recurrent networks 
  supervised and unsupervised learning applications 

Problems:  
 Existence of many local minima! 
 How many neurons and layers needed for a given task? 

 

Support Vector Machine 

 Learning involves optimization of a convex function(no false minima, unlike a neural 
network) 

 

 Nonlinear classification and function estimation by convex optimization 
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           with a unique solution and primal-dual interpretations. 
 Number of neurons (support vectors) automatically follows from a convex program. 
 Learning and generalization in huge dimensional input spaces (able to 

            avoid the curse of dimensionality!). 
  Use of kernels (e.g. linear, polynomial,RBF...) 

Problem: SVM formulation does not include criteria to select kernel function that give good 
generalization.so getting kernel function and parameters are some how trial and error. 
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5. Summary 

Support Vector Machines have been applied to many real-world problems, producing state of 
the art results. These include text categorisation , image classification, and  hand written 
character recognition. 
 
SVMs provide a new approach to the problem of pattern recognition (together with regression 
estimation and linear operator inversion) with clear connections to the underlying 
statistical learning theory. They differ radically from comparable approaches such as neural 
networks: SVM training always finds a global minimum, and their simple geometric 
interpretation provides fertile ground for further investigation. An SVM is largely 
characterized by the choice of its kernel, and SVMs thus link the problems they are designed 
for with a large body of existing work on kernel based methods.  
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