2. Random variable and probability distribution

Discrete random variable

Probability mass function f_{X} of a discrete random variable X is defined by:

$$
f_{X}\left(x_{i}\right) \equiv P\left(X=x_{i}\right)=p\left(x_{i}\right), \quad S_{X}=\left\{x_{i}\right\}
$$

and has the following properties: $\quad 0 \leq f_{X}\left(x_{i}\right) \leq 1$ in $\sum_{x_{i} \in S_{X}} f_{X}\left(x_{i}\right)=1$.
Cumulative distribution function F_{X} of a discrete random variable X is defined by:

$$
F_{X}\left(x_{i}\right) \equiv P\left(X \leq x_{i}\right)=\sum_{x_{j} \leq x_{i}} f_{X}\left(x_{j}\right)
$$

and has the following properties:

$$
\begin{aligned}
& \lim _{x_{i} \rightarrow-\infty} F_{X}\left(x_{i}\right)=\lim _{x_{i} \rightarrow-\infty} P\left(X \leq x_{i}\right)=0, \\
& \lim _{x_{i} \rightarrow+\infty} F_{X}\left(x_{i}\right)=\lim _{x_{i} \rightarrow+\infty} P\left(X \leq x_{i}\right)=1, \\
& x_{i} \geq x_{j} \Rightarrow F_{X}\left(x_{i}\right) \geq F_{X}\left(x_{j}\right)
\end{aligned}
$$

Probability of an interval:

$$
P(a \leq X \leq b)=\sum_{x_{i} \in[a, b]} f_{X}\left(x_{i}\right)=F_{X}(b)-F_{X}(a)
$$

Continuous random variable

Cumulative distribution function F_{X} of a continuous random variable X is defined by:

$$
F_{X}(x) \equiv P(X \leq x) \quad \text { za }-\infty<x<\infty
$$

and has the following properties:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} F_{X}(x)=\lim _{x \rightarrow-\infty} P(X \leq x)=0 \\
& \lim _{x \rightarrow+\infty} F_{X}(x)=\lim _{x \rightarrow+\infty} P(X \leq x)=1 \\
& x_{2} \geq x_{1} \Rightarrow F_{X}\left(x_{2}\right) \geq F_{X}\left(x_{1}\right)
\end{aligned}
$$

Probability density function f_{X} of a continuous random variable X is defined by:

$$
f_{X}(x) \equiv \lim _{\Delta x \rightarrow 0} \frac{\Delta P}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{F_{X}(x+\Delta x)-F_{X}(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta F_{X}(x)}{\Delta x}=\frac{d F_{X}(x)}{d x}=F_{X}^{\prime}(x)
$$

and has the following properties: $\quad f_{X}(x) \geq 0$ in $\int_{-\infty}^{\infty} f_{X}(x) d x=1$.
Probability of an interval: $\quad P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x=F_{X}(b)-F_{X}(a)$.
Useful connections: $\quad F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(u) d u$ za $-\infty<x<\infty$,

$$
\frac{d}{d x} F_{X}(x)=\frac{d}{d x} \int_{-\infty}^{x} f_{X}(u) d u=f_{X}(x)
$$

Mean and variance

	X discrete	X continuous
Mean $m_{X}=\mathrm{E}[X]$	$m_{X}=\sum_{x_{i} \in S_{X}} x_{i} f_{X}\left(x_{i}\right)$	$m_{X}=\int_{-\infty}^{\infty} x f_{X}(x) d x$
Variance		
$\operatorname{Var}[X]=\sigma_{X}^{2}=\mathrm{E}\left[\left(X-m_{X}\right)^{2}\right]$	$\sigma_{X}^{2}=\sum_{x_{i} \in S_{X}}\left(x_{i}-m_{X}\right)^{2} f_{X}\left(x_{i}\right)$	$\sigma_{X}^{2}=\int_{-\infty}^{\infty}\left(x-m_{X}\right)^{2} f_{X}(x) d x$

2. Random variable and probability distribution - problems

1. The sample space of a random experiment is $\{a, b, c, d, e, f\}$, and each outcome is equally likely. A random variable X is defined as follows:

elementary event (=outcome)	a	b	c	d	e	f
x_{i}	0	0	1,5	1,5	2	3

Determine the probability mass function f_{X}. Use it to determine the following probabilities:
a) $P(X=1,5)$, b) $P(0,5<X<2,7)$, c) $P(X>3)$, d) $P(0 \leq X<2)$, e) $P(X=0$ or $X=2)$. Determine the corresponding cumulative probability function.
R: $f(0)=2 / 6 ; f(1,5)=2 / 6 ; f(2)=1 / 6 ; f(3)=1 / 6 ;$ a) $2 / 6$, b) $3 / 6$, c) 0, d) $4 / 6$, e) $3 / 6$
2. Check that the tabulated function is a probability mass function and determine the following probabilities.

x_{i}	-2	-1	0	1	2
$f_{X}\left(x_{i}\right)$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

a) $P(X \leq 2)$, b) $P(X>-2)$, c) $P(-1 \leq X \leq 1)$, d) $P(X \leq 1$ or $X=2)$. Determine the corresponding cumulative probability function.
R: It is. a) 1, b) $7 / 8$, c) $6 / 8$, d) $1 ; F(X<-2)=0 ; F(-2 \leq X<-1)=1 / 8 ; F(-1 \leq X<0)=3 / 8 ; F(0 \leq X<1)=$ $5 / 8 ; F(1 \leq X<2)=7 / 8 ; F(2 \leq X)=1$
3. In a semiconductor manufacturing process, three wafers from a lot are tested. Each wafer is classified as pass or fail. Assume that the probability that a wafer passes the test is 0.8 and that wafers are independent. Determine the probability mass function of the number of wafers from a lot that pass the test. Determine the corresponding cumulative probability function.
R: $f(0)=0,008 ; f(1)=0,096 ; f(2)=0,384 ; f(3)=0,512 ; F(X<0)=0 ; F(0 \leq X<1)=0,008 ; F(1 \leq X<2)=$ 0,$104 ; F(2 \leq X<3)=0,488 ; F(3 \leq X)=1$
4. The probability density function of the time to failure of an electronic component in a copier (in hours) is $f_{X}(x)=\mathrm{e}^{-\frac{x}{1000}} / 1000$ for $x>0$. Determine the corresponding cumulative probability function. Determine the probability that:
a. A component lasts more than 3000 hours before failure.
b. A component fails in the interval from 1000 to 2000 hours.
c. A component fails before 1000 hours.
d. Determine the number of hours at which 10% of all components have failed.

$$
\mathrm{R}: F_{X}(x)=1-\mathrm{e}^{-\frac{x}{1000}} ; \text { a) } 0,0498, \text { b) } 0,233, \text { c) } 0,632, \text { d) } 105
$$

5. Determine the mean and variance of random variables in Exercises 1 and 2.
6. Determine the probability density functions that correspond to the following cumulative probability functions:
a. $\quad F_{X}(x)=1-\mathrm{e}^{-2 x}$ for $x>0$. $\mathrm{R}: f_{X}(x)=2 \mathrm{e}^{-2 x}$
b. $\quad F_{X}(x)=\left\{\begin{array}{cc}0 ; & x<0 \\ 0,2 x ; & 0 \leq x<4 \\ 0,04 x+0,64 ; & 4 \leq x<9 \\ 1 ; & 9 \leq x\end{array} \quad \mathrm{R}: f_{X}(x)=\left\{\begin{array}{cc}0 ; & x<0 \\ 0,2 ; & 0 \leq x<4 \\ 0,04 ; & 4 \leq x<9 \\ 0 ; & 9 \leq x\end{array}\right.\right.$
