2. Random variable and probability distribution

Discrete random variable

Probability mass function f_X of a discrete random variable X is defined by:

$$f_X(x_i) \equiv P(X = x_i) = p(x_i), \ S_X = \{x_i\}$$

 $0 \le f_X(x_i) \le 1$ in $\sum_{x_i \in S_Y} f_X(x_i) = 1$.

and has the following properties:

Cumulative distribution function F_X of a discrete random variable X is defined by:

$$F_X(x_i) \equiv P(X \le x_i) = \sum_{x_j \le x_i} f_X(x_j)$$

and has the following properties:

$$\lim_{x_i \to -\infty} F_X(x_i) = \lim_{x_i \to -\infty} P(X \le x_i) = 0,$$
$$\lim_{x_i \to +\infty} F_X(x_i) = \lim_{x_i \to +\infty} P(X \le x_i) = 1,$$
$$x_i \ge x_j \Rightarrow F_X(x_i) \ge F_X(x_j).$$
$$P(a \le X \le b) = \sum_{x_i \in [a,b]} f_X(x_i) = F_X(b) - F_X(a).$$

Probability of an interval:

Continuous random variable

Cumulative distribution function F_X of a continuous random variable X is defined by:

$$F_X(x) \equiv P(X \le x) \quad \text{za} \quad -\infty < x < \infty$$

and has the following properties:
$$\lim_{x \to -\infty} F_X(x) = \lim_{x \to -\infty} P(X \le x) = 0,$$
$$\lim_{x \to +\infty} F_X(x) = \lim_{x \to +\infty} P(X \le x) = 1,$$
$$x_2 \ge x_1 \Rightarrow F_X(x_2) \ge F_X(x_1).$$

Probability density function f_X of a continuous random variable X is defined by:

$$f_X(x) \equiv \lim_{\Delta x \to 0} \frac{\Delta P}{\Delta x} = \lim_{\Delta x \to 0} \frac{F_X(x + \Delta x) - F_X(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta F_X(x)}{\Delta x} = \frac{dF_X(x)}{dx} = F'_X(x)$$

and has the following properties: $f_X(x) \ge 0$ in $\int_{-\infty}^{\infty} f_X(x) dx = 1$.

$$P(a \le X \le b) = \int_{a}^{b} f_{X}(x) \, dx = F_{X}(b) - F_{X}(a).$$

Useful connections: $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(u) \, du$ za $-\infty < x < \infty$,

$$\frac{d}{dx}F_X(x) = \frac{d}{dx}\int_{-\infty}^x f_X(u) \, du = f_X(x).$$

Mean and variance

Probability of an interval:

	X discrete	X continuous		
Mean $m_X = \mathrm{E}[X]$	$m_X = \sum_{x_i \in S_X} x_i f_X(x_i)$	$m_X = \int_{-\infty}^{\infty} x f_X(x) dx$		
Variance Var $[X] = \sigma_X^2 = E[(X - m_X)^2]$	$\sigma_X^2 = \sum_{x_i \in S_X} (x_i - m_X)^2 f_X(x_i)$	$\sigma_X^2 = \int_{-\infty}^{\infty} (x - m_X)^2 f_X(x) dx$		

2. Random variable and probability distribution - problems

1. The sample space of a random experiment is {*a*, *b*, *c*, *d*, *e*, *f*}, and each outcome is equally likely. A random variable *X* is defined as follows:

elementary event (=outcome)	а	b	С	d	е	f
x_i	0	0	1,5	1,5	2	3

Determine the probability mass function f_X . Use it to determine the following probabilities: a) P(X = 1,5), b) P(0,5 < X < 2,7), c) P(X > 3), d) $P(0 \le X < 2)$, e) P(X = 0 or X = 2). Determine the corresponding cumulative probability function.

R: f(0) = 2/6; f(1,5) = 2/6; f(2) = 1/6; f(3) = 1/6; a) 2/6, b) 3/6, c) 0, d) 4/6, e) 3/6

2. Check that the tabulated function is a probability mass function and determine the following probabilities.

x _i	-2	-1	0	1	2
$f_X(x_i)$	1/8	2/8	2/8	2/8	1/8

a) $P(X \le 2)$, b) P(X > -2), c) $P(-1 \le X \le 1)$, d) $P(X \le 1 \text{ or } X = 2)$. Determine the corresponding cumulative probability function.

R: It is. a) 1, b) 7/8, c) 6/8, d) 1; F(X < -2) = 0; $F(-2 \le X < -1) = 1/8$; $F(-1 \le X < 0) = 3/8$; $F(0 \le X < 1) = 5/8$; $F(1 \le X < 2) = 7/8$; $F(2 \le X) = 1$

- 3. In a semiconductor manufacturing process, three wafers from a lot are tested. Each wafer is classified as pass or fail. Assume that the probability that a wafer passes the test is 0.8 and that wafers are independent. Determine the probability mass function of the number of wafers from a lot that pass the test. Determine the corresponding cumulative probability function. R: f(0) = 0,008; f(1) = 0,096; f(2) = 0,384; f(3) = 0,512; F(X < 0) = 0; $F(0 \le X < 1) = 0,008$; $F(1 \le X < 2) = 0,104$; $F(2 \le X < 3) = 0,488$; $F(3 \le X) = 1$
- 4. The probability density function of the time to failure of an electronic component in a copier (in hours) is $f_X(x) = e^{-\frac{x}{1000}}/1000$ for x > 0. Determine the corresponding cumulative probability function. Determine the probability that:
 - a. A component lasts more than 3000 hours before failure.
 - b. A component fails in the interval from 1000 to 2000 hours.
 - c. A component fails before 1000 hours.
 - d. Determine the number of hours at which 10 % of all components have failed. R: $F_X(x) = 1 - e^{-\frac{x}{1000}}$; a) 0,0498, b) 0,233, c) 0,632, d) 105
- 5. Determine the mean and variance of random variables in Exercises 1 and 2.
- 6. Determine the probability density functions that correspond to the following cumulative probability functions:

a.
$$F_X(x) = 1 - e^{-2x}$$
 for $x > 0$. R: $f_X(x) = 2e^{-2x}$
b. $F_X(x) = \begin{cases} 0; & x < 0 \\ 0,2x; & 0 \le x < 4 \\ 0,04x + 0,64; & 4 \le x < 9 \\ 1; & 9 < x \end{cases}$ R: $f_X(x) = \begin{cases} 0; & x < 0 \\ 0,2; & 0 \le x < 4 \\ 0,04; & 4 \le x < 9 \\ 0; & 9 \le x \end{cases}$