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1. Problem statement 

 

Fisher’s Iris data base (Fisher, 1936) is perhaps the best known 

database to be found in the pattern recognition literature. The data 

set contains 3 classes of 50 instances each, where each class refers 

to a type of iris plant. One class is linearly separable from the other 

two; the latter are not linearly separable from each other. 

The data base contains the following attributes: 

1). sepal length in cm 

2). sepal width in cm 

3). petal length in cm 

4). petal width in cm 

5). class: 

- Iris Setosa 

- Iris Versicolour 

- Iris Virginica 

Fisher’s Iris data base is available in Matlab (load fisheriris) and in 

Internet (for example, on http://archive.ics.uci.edu/ml/datasets/Iris). 

The goal of the seminar is to demonstrate the process of building a 

neural network based classifier that solves the classification problem. 

During the seminar various neural network based approaches will be 

shown, the process of building various neural network architectures 

will be demonstrated, and finally classification results will be 

presented. 

http://archive.ics.uci.edu/ml/datasets/Iris


 

2. Theoretical part 

 

In this seminar classification problem is solved by 3 types of neural 

networks: 

1) multilayer perceptron; 

2) radial basis function network; 

3) probabilistic neural network. 

These network types are shortly described in this seminar. Each of 

these networks has adjustable parameters that affect its 

performance. 

 

2.1Multilayer perceptron 

Multilayer perceptron is a multilayer feedforward network. 

 
Feedforward networks often have one or more hidden layers of 

sigmoid neurons followed by an output layer of linear neurons. 

Multiple layers of neurons with nonlinear transfer functions allow the 

network to learn nonlinear and linear relationships between input 

and output vectors. The linear output layer lets the network produce 

values outside the range -1 to +1. 



In this seminar the transfer functions of hidden layers are hyperbolic 

tangent sigmoid functions. Network architecture is determined by 

the number of hidden layers and by the number of neurons in each 

hidden layer. 

The network is trained by the backpropagation learning rule. 

 

2.2 Radial basis function network 

Radial basis function network is a feedforward network. 

 
Radial basis function networks consist of two layers: a hidden radial 

basis layer of S1 neurons, and an output linear layer of S2 neurons. 

Each radial basis layer neuron’s weighted input is the distance 

between the input vector and its weight vector. Each radial basis 

layer neuron’s net input is the element-by-element product of its 

weighted input with its bias. Each neuron’s output is its net input 

passed through radial basis transfer function. 

Radial basis function network is created iteratively one neuron at a 

time. Neurons are added to the network until the sum-squared error 

falls beneath an error goal or a maximum number of neurons has 

been reached. 



Design parameter of radial basis function network is spread of radial 

basis transfer function. 

 

2.3 Probabilistic neural network 

Probabilistic neural network is a feedforward network. It is specialized 

to classification. 

 
When an input is presented, the first layer computes distances from 

the input vector to the training input vectors and produces a vector 

whose elements indicate how close the input is to a training input. 

The second layer sums these contributions for each class of inputs to 

produce as its net output a vector of probabilities. Finally, a 

competitive output layer picks the maximum of these probabilities, 

and produces a 1 for that class and a 0 for the other classes. 

Design parameter of probabilistic neural network is spread of radial 

basis transfer function. 

Little or no training is required for probabilistic neural network (except 

spread optimization). 



3. Practical part 

 

3.1 Cross-validation 

In this seminar a cross-validation procedure is applied to provide 

better generalization of neural network classifiers. To perform the 

cross-validation procedure input data is partitioned into 3 sets: 

1) training set; 

2) validation set; 

3) test set. 

The training set is used to train the network. The validation set is used 

to validate the network, to adjust network design parameters. The 

test set is used to test the generalization performance of the 

selected design of neural network. 

To ensure a correct comparison of different types of neural networks 

the division of input data into training, validation and test sets is 

performed by independent part of code (see Appendix) and the 

division result is stored. 

The partitioning of input data is performed randomly with a certain 

ratio of input entities to be stored as training set, validation set and 

test set (0.7, 0.15 and 0.15 respectively). 

 

3.2 Multilayer perceptron 

As soon as the architecture and the performance of multilayer 

perceptron are determined by the number of hidden layers and by 

the number of neurons in each hidden layer these are the network 

design parameters that are adjusted. The correct classification 

function is introduced as the ratio of number of correctly classified 

inputs to the whole number of inputs. 



Multilayer perceptrons with 1 and 2 hidden layers are investigated. 

The procedure of adjusting the number of neurons in hidden layers is 

organized as a grid search (see Appendix). With each combination 

of numbers of neurons in the hidden layers the multilayer perceptron 

is trained on the train set, the value of correct classification function 

for the train set is stored. The validation set is used for standard early 

stopping procedure, the value of correct classification function for 

the validation set is stored as well. 

The values of the correct classification function are plotted versus 

the corresponding number of neurons in the hidden layer. 

 
Fig. 1. Correct classification function for multilayer perceptron with 1 hidden layer. Blue line – 

training set; green line – validation set 



  
 

Fig. 2. Correct classification function for multilayer perceptron with 2 hidden layers (2 ortogonal 

projections of surface). Training set 

  

Fig. 3. Correct classification function for multilayer perceptron with 2 hidden layers (2 ortogonal 

projections of surface). Validation set 

The number of neurons that ensures the best generalization is 

chosen. The training and simulation of the chosen model of 

multilayer perceptron is performed on joined training and validation 

sets, the value of correct classification function is calculated. 

Finally, the generalization performance of the network is simulated 

on the test set. The corresponding value of correct classification 

function is calculated. 

For the training of the multilayer perceptron BFGS algorithm is used, 

as it is known that for small networks quasi-Newton algorithms are 

preferable. 

 

3.3 Radial basis function network 



To obtain the optimal performance of the radial basis function 

network spread parameter is adjusted. The procedure of adjusting 

the spread is organized as a search (see Appendix). The search is 

performed in 2 iterations with different range of varying parameter 

and different search step. 

For each value of spread the radial basis function network is 

simulated for the train and validation sets, the values of correct 

classification function for the train set and for the validation set are 

stored. 

The values of the correct classification function are plotted versus 

the spread. 

  



 
Fig. 4. Correct classification function for radial basis function network. Blue line – training set; 

green line – validation set 

The value of spread parameter that ensures the best generalization 

is chosen. The radial basis function network is built and simulated on 

joined training and validation sets, the value of correct classification 

function is calculated. 

Finally, the generalization performance of the network is tested on 

the test set. The corresponding value of correct classification 

function is calculated. 

 

3.4 Probabilistic neural network 

To obtain the optimal performance of the probabilistic neural 

network spread parameter is adjusted. The procedure of adjusting 

the spread is organized as a search (see Appendix). The search is 

performed in 2 iterations with different range of varying parameter 

and different search step. 

For each value of spread the probabilistic neural network is 

simulated for the train and validation sets, the values of correct 



classification function for the train set and for the validation set are 

stored. 

The values of the correct classification function are plotted versus 

the spread. 

 

 
Fig. 5. Correct classification function for radial basis function network. Blue line – training set; 

green line – validation set 

The value of spread parameter that ensures the best generalization 

is chosen. The probabilistic neural network is built and simulated on 

joined training and validation sets, the value of correct classification 

function is calculated. 



Finally, the generalization performance of the network is tested on 

the test set. The corresponding value of correct classification 

function is calculated. 

 

3.5 Results comparison 

In the following table the values of correct classification function 

obtained by supplying different sets of input data into the chosen 

models of neural networks and processing their outputs are 

presented. 
Table 1 

Neural networks 

Sets of inputs Multilayer 

perceptron 

Radial basis 

function 

network 

Probabilistic 

neural network 

training + 

validation 
99.483% 99.225% 98.450% 

test 96.825% 100% 95.238% 

 



 

4. Possible ways to improve the performance of discussed neural 

networks 

 

From working on my seminar and from discussions with my mentor I 

see the following ways to improve the performance of neural 

networks investigated: 

1. Input data pre-processing 

1) Partitioning of the input data for the cross-validation procedure 

has effect on the neural network performance. Indeed, even 

when the same values of division ratios are kept (0.7/0.15/0.15) 

and the whole data set is partitioned randomly again, the 

values of the correct classification function change: 
Table 2 

Neural networks 

Sets of inputs Multilayer 

perceptron 

Radial basis 

function 

network 

Probabilistic 

neural 

network 

training + 

validation 
100% 99.483% 100% 

test 96.825% 96.825% 95.238% 

This probably happens because the number of inputs is very 

small and the performance of the network is very sensitive to 

the way the original set is partitioned. The partitioning of original 

set can also be optimized. The possible way is to divide the 

original data set into a number of small sets and to search 

through them for the one that ensures the best generalization 

being used as validation set. 



2) The principal component analysis can be applied to the 

original data set to reduce its dimensionality. 

2. Multilayer perceptron adjustment 

While adjusting the number of neurons in hidden layers of 

multilayer perceptron the results of grid search appear not 

unique. For example, for a single hidden layer the plots of the 

correct classification function versus number of neurons are 

different each time the search is performed: 

 

 
This probably happens because on every search run the 

training is finished in a different local minima of network 

performance function. 

Applying a different network training function doesn’t solve the 

problem. Still, the BFGS algorithm is used for training instead of 

standard Levenberg-Marquardt algorithm, because the 

training is performed slightly faster. 



 

5. Conclusions 

 

1. Classification performance of all 3 investigated types of neural 

networks is acceptable. 

2. Radial basis function network exhibits better generalization 

performance then multilayer perceptron and probabilistic 

neural network. 

3. Small number of inputs effect crucially on the generalization 

performance of neural network classifier. 



 

Appendix 

 

1. Multilayer perceptron Matlab code 
close all; clear; clc 
%% load divided input data set 
load divinp.mat 
% coding (+1/-1) of 3 classes 
a = [-1 -1 +1]'; 
b = [-1 +1 -1]'; 
c = [+1 -1 -1]'; 
% define training inputs 
trainInp = [trainSeto trainVers trainVirg]; 
% define targets 
T = [repmat(a,1,length(trainSeto)) repmat(b,1,length(trainVers)) 
repmat(c,1,length(trainVirg))]; 
%% network training 
trainCor = zeros(10,10); 
valCor = zeros(10,10); 
Xn = zeros(1,10); 
Yn = zeros(1,10); 
for k = 1:10  ,
Yn(1,k) = k; 
for n = 1:10, 
Xn(1,n) = n; 
net = newff(trainInp,T,[k n],{},'trainbfg'); 
net = init(net); 
net.divideParam.trainRatio = 1; 
net.divideParam.valRatio = 0; 
net.divideParam.testRatio = 0; 
%net.trainParam.show = NaN; 
net.trainParam.max_fail = 2; 
  
valInp = [valSeto valVers valVirg]; 
VV.P = valInp; 
valT = [repmat(a,1,length(valSeto)) repmat(b,1,length(valVers)) 
repmat(c,1,length(valVirg))]; 
  
net = train(net,trainInp,T,[],[],VV);%,TV); 
  
Y = sim(net,trainInp); 
  
[Yval,Pfval,Afval,Eval,perfval] = sim(net,valInp,[],[],valT); 
  
% calculate [%] of correct classifications 
trainCor(k,n) = 100 * length(find(T.*Y > 0)) / length(T); 
valCor(k,n) = 100 * length(find(valT.*Yval > 0)) / length(valT); 
end 
end 
figure 
surf(Xn,Yn,trainCor/3); 
view(2) 
figure 
surf(Xn,Yn,valCor/3); 
view(2) 
%% final training 
k = 3; 



n = 3; 
  
fintrain = [trainInp valInp]; 
finT = [T valT]; 
  
net = newff(fintrain,finT,[k n],{},'trainbfg'); 
net.divideParam.trainRatio = 1; 
net.divideParam.valRatio = 0; 
net.divideParam.testRatio = 0; 
  
net = train(net,fintrain,finT); 
  
finY = sim(net,fintrain); 
  
finCor = 100 * length(find(finT.*finY > 0)) / length(finT); 
fprintf('Num of neurons in 1st layer  = %d\n',net.layers{1}.size) 
fprintf('Num of neurons in 2nd layer  = %d\n',net.layers{2}.size) 
fprintf('Correct class   = %.3f %%\n',finCor/3) 
%% Testing 
% define test set 
testInp = [testSeto testVers testVirg]; 
testT = [repmat(a,1,length(testSeto)) repmat(b,1,length(testVers)) 
repmat(c,1,length(testVirg))]; 
  
testOut = sim(net,testInp); 
testCor = 100 * length(find(testT.*testOut > 0)) / length(testT); 
fprintf('Correct class   = %.3f %%\n',testCor/3) 
  
% plot targets and network response 
figure; 
plot(testT') 
xlim([1 21]) 
ylim([0 2]) 
set(gca,'ytick',[1 2 3]) 
hold on 
grid on 
plot(testOut','r') 
legend('Targets','Network response') 
xlabel('Sample No.') 
 

2. Radial basis function network Matlab code 
close all; clear; clc 
%% load divided input data set 
load divinp.mat 
% coding (+1/-1) of 3 classes 
a = [-1 -1 +1]'; 
b = [-1 +1 -1]'; 
c = [+1 -1 -1]'; 
% define training inputs 
trainInp = [trainSeto trainVers trainVirg]; 
% define targets 
T = [repmat(a,1,length(trainSeto)) repmat(b,1,length(trainVers)) 
repmat(c,1,length(trainVirg))]; 
%% choose a spread constant (1st step) 
spread = 2.1; 
Cor = zeros(2,209); 
Sp = zeros(1,209); 
Sp(1,1) = spread; 
for i = 1:209, 
spread = spread - 0.01; 



Sp(1,i) = spread; 
% choose max number of neurons 
K = 40; 
% performance goal (SSE) 
goal = 0; 
% number of neurons to add between displays 
Ki = 5; 
  
% create a neural network 
net = newrb(trainInp,T,goal,spread,K,Ki); 
  
% simulate RBFN on training data 
Y = sim(net,trainInp); 
  
% define validation vector 
valInp = [valSeto valVers valVirg]; 
valT = [repmat(a,1,length(valSeto)) repmat(b,1,length(valVers)) 
repmat(c,1,length(valVirg))]; 
[Yval,Pf,Af,E,perf] = sim(net,valInp,[],[],valT); 
  
% calculate [%] of correct classifications 
Cor(1,i) = 100 * length(find(T.*Y > 0)) / length(T); 
Cor(2,i) = 100 * length(find(valT.*Yval > 0)) / length(valT); 
end 
figure 
pl = plot(Sp,Cor/3); 
set(pl,{'linewidth'},{1,3}'); 
%% choose a spread constant (2nd step) 
spread = 1.0; 
Cor = zeros(2,410)  ;
Sp = zeros(1,410); 
Sp(1,1) = spread; 
for i = 1:410, 
spread = spread - 0.001; 
Sp(1,i) = spread; 
% choose max number of neurons 
K = 40; 
% performance goal (SSE) 
goal = 0; 
% number of neurons to add between displays 
Ki = 5; 
  
% create a neural network 
net = newrb(trainInp,T,goal,spread,K,Ki); 
  
% simulate RBFN on training data 
Y = sim(net,trainInp); 
  
% define validation vector 
valInp = [valSeto valVers valVirg]; 
valT = [repmat(a,1,length(valSeto)) repmat(b,1,length(valVers)) 
repmat(c,1,length(valVirg))]; 
[Yval,Pf,Af,E,perf] = sim(net,valInp,[],[],valT); 
  
% calculate [%] of correct classifications 
Cor(1,i) = 100 * length(find(T.*Y > 0)) / length(T); 
Cor(2,i) = 100 * length(find(valT.*Yval > 0)) / length(valT); 
end 
figure 
pl = plot(Sp,Cor/3); 
set(pl,{'linewidth'},{1,3}'); 
%% final training 



spr = 0.8; 
fintrain = [trainInp valInp]; 
finT = [T valT]; 
[net,tr] = newrb(fintrain,finT,goal,spr,K,Ki); 
  
% simulate RBFN on training data 
finY = sim(net,fintrain); 
  
% calculate [%] of correct classifications 
finCor = 100 * length(find(finT.*finY > 0)) / length(finT); 
fprintf('\nSpread          = %.3f\n',spr) 
fprintf('Num of neurons  = %d\n',net.layers{1}.size) 
fprintf('Correct class   = %.3f %%\n',finCor/3) 
% plot targets and network response 
figure; 
plot(T') 
ylim([-2 2]) 
set(gca,'ytick',[-2 0 2]) 
hold on 
grid on 
plot(Y','r') 
legend('Targets','Network response') 
xlabel('Sample No.') 
%% Testing 
% define test set 
testInp = [testSeto testVers testVirg]; 
testT = [repmat(a,1,length(testSeto)) repmat(b,1,length(testVers)) 
repmat(c,1,length(testVirg))]; 
  
testOut = sim(net,testInp); 
testCor = 100 * length(find(testT.*testOut > 0)) / length(testT); 
fprintf('\nSpread          = %.3f\n',spr) 
fprintf('Num of neurons  = %d\n',net.layers{1}.size) 
fprintf('Correct class   = %.3f %%\n',testCor/3) 
  
% plot targets and network response 
figure; 
plot(testT') 
ylim([-2 2]) 
set(gca,'ytick',[-2 0 2]) 
hold on 
grid on 
plot(testOut','r') 
legend('Targets','Network response') 
xlabel('Sample No.') 
 

3. Probabilistic neural network Matlab code 
close all; clear; clc 
%% load divided input data set 
load divinp.mat 
% coding the classes 
a = 1; 
b = 2; 
c = 3; 
% define training inputs 
trainInp = [trainSeto trainVers trainVirg]; 
% define targets 
T = [repmat(a,1,length(trainSeto)) repmat(b,1,length(trainVers)) 
repmat(c,1,length(trainVirg))]; 
%% choose a spread constant (1st step) 



spread = 1.1; 
Cor = zeros(2,109); 
Sp = zeros(1,109)  ;
Sp(1,1) = spread; 
for i = 1:109, 
spread = spread - 0.01; 
Sp(1,i) = spread; 
% create a neural network 
net = newpnn(trainInp,ind2vec(T),spread); 
  
% simulate PNN on training data 
Y = sim(net,trainInp); 
% convert PNN outputs 
Y = vec2ind(Y); 
  
% define validation vector 
valInp = [valSeto valVers valVirg]; 
valT = [repmat(a,1,length(valSeto)) repmat(b,1,length(valVers)) 
repmat(c,1,length(valVirg))]; 
Yval = sim(net,valInp,[],[],ind2vec(valT)); 
Yval = vec2ind(Yval); 
  
% calculate [%] of correct classifications 
Cor(1,i) = 100 * length(find(T==Y)) / length(T); 
Cor(2,i) = 100 * length(find(valT==Yval)) / length(valT); 
end 
figure 
pl = plot(Sp,Cor); 
set(pl,{'linewidth'},{1,3}'); 
%% choose a spread constant (2nd step) 
spread = 0.25; 
Cor1 = zeros(2,200); 
Sp1 = zeros(1,200); 
Sp1(1,1) = spread; 
for i = 1:200, 
spread = spread - 0.0001; 
Sp1(1,i) = spread; 
% create a neural network 
net = newpnn(trainInp,ind2vec(T),spread); 
  
% simulate PNN on training data 
Y = sim(net,trainInp)  ;
% convert PNN outputs 
Y = vec2ind(Y); 
  
Yval = sim(net,valInp,[],[],ind2vec(valT)); 
Yval = vec2ind(Yval); 
  
% calculate [%] of correct classifications 
Cor1(1,i) = 100 * length(find(T==Y)) / length(T); 
Cor1(2,i) = 100 * length(find(valT==Yval)) / length(valT); 
end 
figure 
pl1 = plot(Sp1,Cor1); 
set(pl1,{'linewidth'},{1,3}'); 
%% final training 
spr = 0.242; 
fintrain = [trainInp valInp]; 
finT = [T valT]; 
net = newpnn(fintrain,ind2vec(finT),spr); 
  
% simulate PNN on training data 



finY = sim(net,fintrain); 
% convert PNN outputs 
finY = vec2ind(finY); 
  
% calculate [%] of correct classifications 
finCor = 100 * length(find(finT==finY)) / length(finT); 
fprintf('\nSpread          = %.3f\n',spr) 
fprintf('Num of neurons  = %d\n',net.layers{1}.size) 
fprintf('Correct class   = %.3f %%\n',finCor) 
% plot targets and network response 
figure; 
plot(T') 
ylim([0 4]) 
set(gca ,[1 2 3]) ,'ytick'
hold on 
grid on 
plot(Y','r') 
legend('Targets','Network response') 
xlabel('Sample No.') 
%% Testing 
% define test set 
testInp = [testSeto testVers testVirg]; 
testT = [repmat(a,1,length(testSeto)) repmat(b,1,length(testVers)) 
repmat(c,1,length(testVirg))]; 
  
testOut = sim(net,testInp); 
testOut = vec2ind(testOut); 
testCor = 100 * length(find(testT==testOut)) / length(testT); 
fprintf('\nSpread          = %.3f\n',spr) 
fprintf('Num of neurons  = %d\n',net.layers{1}.size) 
fprintf('Correct class   = %.3f %%\n',testCor) 
  
% plot targets and network response 
figure; 
plot(testT') 
ylim([0 4]) 
set(gca ,[1 2 3]) ,'ytick'
hold on 
grid on 
plot(testOut','r') 
legend('Targets','Network response') 
xlabel('Sample No.') 
 


