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1 Introduction 

1.1 Critical flow Venturi nozzle 

A critical flow Venturi nozzle (CFVN) is a convergent-divergent restriction inserted into a 
system and is used to determine the mass flow rate of a gas flowing through a system. In 
the critical flow Venturi nozzle the gas flow accelerates to the critical velocity at the throat 
(local sonic velocity) due to geometrical configuration and conditions of use. Throat is the 
section of minimal diameter of a Venturi nozzle. At the critical velocity, the mass flow rate 
of the gas is the maximum possible for the existing upstream conditions. A drawing of a 
toroidal-throat Venturi nozzle is shown in Figure 1. 
 
For a critical flow Venturi nozzle the only measurements required are the gas pressure and 
the gas temperature (or density) upstream of the Venturi nozzle, since the throat conditions 
can be calculated from the thermodynamic considerations. An important consideration is 
that the flow through the Venturi nozzle is independent of the downstream pressure, p2, if 
the ratio of this pressure to inlet stagnation pressure, p0, is smaller than critical:[1], [2] 
 

 2 2

0 0 cr

p p

p p

 
  
 

. (1) 

 
If this is true, the Venturi nozzle can be used for critical flow measurement. For detailed 
description of determination of the critical pressure ratio  2 0/

cr
p p  have a look at 

references [1] and [2]. 
 
 

 
 

Figure 1: A toroidal-throat Venturi nozzle.[3] 

  
The most common applications of CFVNs are for tests, calibration and flow control. 
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1.2  Measurement of gas mass flow rate using critical flow Venturi nozzle  

The mass flow rate under real conditions shall be computed from the equation:[1] 
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where p0 and T0 are absolute stagnation pressure and temperature, respectively, of the gas 
at nozzle inlet, Ant is cross-sectional area of Venturi nozzle throat, Cd is discharge 
coefficient, C* is critical flow function, 8,314472 J/mol/KR   is universal gas constant 
and M is molar mass of the gas. 
 
The inlet stagnation pressure, p0, and the inlet stagnation temperature, T0, may be 
determined from the relationships:[1] 
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where p1 and T1 are measured inlet pressure and temperature, respectively, Ma1 is Mach 
number at the nozzle upstream static conditions – ratio of the mean axial fluid velocity to 
the velocity of sound at the location of the upstream pressure tapping, and κ is isentropic 
exponent. For an ideal gas,  κ  is equal to the ratio of specific heat capacities /p vc c  .  

 
Stagnation pressure and temperature would exist in a gas in a flowing gas stream if the 
stream were brought to rest by an isentropic process. For very small inlet Mach numbers it 
is possible to approximate stagnation pressure, p0, and temperature, T0, with inlet pressure, 
p1, and temperature, T1. Approximation error is negligible at large ratio of inlet pipe 
diameter, D, to the diameter of Venturi nozzle throat, d, since 2 2

1 /Ma d D .[2] 

 
Cross-section area of Venturi nozzle throat Ant may be calculated from the formula: 
 

 
2

4nt

d
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 . (5) 

 
Discharge coefficient Cd is a dimensionless ratio of the actual flow rate to the ideal flow 
rate of non-viscous gas that would be obtained with one-dimensional isentropic flow for 
the same upstream stagnation conditions. This coefficient corrects for viscous and flow 
field curvature effects. Discharge coefficient Cd depends largely on the design of the 
CFVN and installation conditions.  
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It is a function of the throat Reynolds number and may be obtained from the following 
equation: 
 n

d ntC a bRe  . (6) 

 
Values of coefficients a, b and n depend on geometry (type) of CFVN.  
 
Reynolds number is defined as: 
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, (7) 

 
where 0  is gas dynamic viscosity.  

 
To aviod iterative computational methods, the ideal mass flow rate qm,id may be used in 
Equation (7):[2] 
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where C*i is the critical flow function for one-dimensional isentropic flow of a perfect 
gas:[2] 
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. (9) 

 
Critical flow function of a real gas, C*, is a dimensionless function which characterizes 
the thermodynamic flow properties of an isentropic and one-dimensional flow between the 
inlet and the throat of a Venturi nozzle. It is a function of stagnation conditions and nature 
of the gas. An empirical equation has been developed to accurately represent the C* values 
for various gases. The empirical equation takes the form:[1] 
 

 0 0
*

i ib c

i
i c c

p T
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p T

   
    

   
 , (10) 

 
where pc and Tc are critical pressure and critical temperature, respectively, and ai, bi and ci 
are gas-dependent coefficients. Equation (10) is applicable over the restricted temperature 
ranges – for more details, have a look at reference [1]. 
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In the case when gas is humid air, the mass flow rate can be calculated from the 
relationship:[2] 
 

 
,

1 0, 210m
v

m dry

q
x

q
  , (11) 

 
where qm,dry is calculated by Equation (2), wherein M is molar mass of dry air, and xv is 
molar mass fraction of water vapour, which is defined as:[4] 
 

    
, sv

v e

p T
x f p T

p
  , (12) 

 
where φ is relative humidity, fe is enhancement factor and psv is vapour pressure at 
saturation. 
 
 

1.3 Measurement system 

The measurement system for identification of the measurement characteristic of the CFVN 
mass flow meter consists of: 
 a pressure valve for setting gauge pressure of gas in the upstream pipe of the nozzle, 
 pressure meter Druck DPI 605 that measures inlet pressure (at the entrance) of a 

Venturi nozzle, 
 a set of 5 critical flow Venturi nozzles mounted into a cluster; only the nozzle with 

diameter of 0,436 mm was used, 
 reference volume flow meter Sierra Instruments Cal=Trak SL-800 that measures also 

temperature, T, and ambient pressure, pa, 
 personal computer with supervision program (LabView). 
 
A scheme and a picture of the measurement system are represented in Figures 2 and 3. 
 
Reference mass flow rate is calculated by the equation: 
 
   ,,m a v refq p T q   , (13) 

 
where ρ is gas density, determined by ambient pressure, pa, and temperature, T. 
 
Gas temperature is set by room temperature in the laboratory, which is regulated by the air-
conditioning system.  
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Figure 2: Scheme of the measurement system. 

 
 

 
 
 
 

 
 

 
 
 

 
Figure 3: Picture of the measurement system. 
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1.4 Problem description 

As introduced in prior sections, pressure and temperature influence the mass flow rate 
directly and indirectly, i.e. through influence on gas thermodynamic and transport 
properites (e.g. critical flow function or discharge coefficient). The method for 
identification of the relationship between pressure, temperature and mass flow rate is 
known and standardized – look at reference [1]. But on the other hand, modelling of this 
relationship by a neural network represents an alternative possibility and also a challenge. 
 
 

1.5 Goals of the seminar 

Goals of the seminar are:  
 identification of the measurement characteristic of the CFVN mass flow meter using: 
 a linear regression model, 
 a radial basis function neural network model, 
 a radial basis function neural network model with incorporated prior knowledge, 

 selection of optimal parameters of both radial basis function neural network models, 
 comparison of performances, i.e. approximation and generalization abilities, of all three 

models. 
 
 

1.6 Solution approach 

We measured mass flow rates in typical ranges of pressure and temperature, i.e. 
approximately from 200 to 650 kPa and from 20 to 25 °C. Thus measured data is 
representative for the problem considered. At every set pressure and temperature 10 
measurements of mass flow rate were repeated and data were saved. 45 differently set 
values of pressure and temperature were selected, thus we got 450 measurement points 
(Figure 4). On these 45 clusters, each consisting of 10 data points, approximation models 
were estimated and validated. As described in Section 1.5, our goal is to identify the 
measurement characteristic of the CFVN mass flow meter using three various models. 
 

1.7 Expected results 

In the model, described by Equation (2), it is obvious that the function  ,mq f p T  is 

nonlinear, even though its nonlinearity is not visible from plotted values of this function at 
the first sight (Figure 4). But for the CFVN measurement system with target expanded 
measurement uncertainty of about 0,2 % of the measured mass flow rate, it is necessary for 
the model to involve this nonlinearity. 
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Figure 4: Measured data: 45 clusters, each containing 10 data points (blue stars). 
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2 Radial Basis Function Network 

2.1 Theoretical background 

A radial basis function network (RBFN) has two computational layers. Hidden layer 
consists of a set of radial basis functions and output layer implements linear summation 
functions.[5] Scheme of a RBFN is represented in Figure 5. 
 

 
Figure 5: Scheme of a radial basis function network. 

 
 
Activation of each (p-th) hidden unit is determined by distance between input vector, x, 
and its prototype vector, μp. An example of a radial basis function is the Gaussian function 
with the following form:[5] 
 

  
2p

p
g 2

exp
2

     
 
 

x μ
x μ . (14) 

 
Gaussian and some other basis functions are localised, which means:[5] 

 

  p p0   as       x μ x μ . (15) 

 
Output of a radial basis function network is a linear combination of basis functions:[5] 
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or, in other words, it is a superposition of radial basis functions with their heights set by 
output weights wk. 
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The training procedure of a RBFN can be divided into two stages: 
 training of hidden layer weights, 
 training of output layer weights. 
 
Hidden layer can be trained by unsupervised methods, e.g. random selection of fixed 
centers, orthogonal least squares or K-means clustering. The result is determination of 
centers and widths of radial basis functions in hidden layer neurons. In general, number N 
of basis functions (hidden units) should be much less than the number of training data 
points. 
 
Output layer has linear activation, thus the output weights are determined analitically by 
solving a set of linear equations. Values of output layer weights are determined as values, 
at which the sum-squared output error,[5] 
 

   2

p

1

2
p

k k
p k

E y t  μ , (17) 

 
reaches its minimum. In Equation (17) kpt  are target values. 

 
It is also possible to perform supervised training of basis function parameters. Given 
results are generally better than those of unsupervised learning, but the procedure is 
computationally inefficient. 
 
 

2.2 Radial basis function networks in Matlab 

In Matlab, the function newrb creates a radial basis function network. The first layer has 
neurons with radbas transfer function (Equation (18)) and calculates its weighted inputs 
with dist and its net input with neprod. The second layer has neurons with purelin transfer 
function and calculates its weighted input with dotprod and its net inputs with netsum. 
Both layers have biases. Architecture of a RBFN is represented in Figure 6.[7] 
 
Initially the hidden layer has no neurons. The following steps are repeated until the 
network's mean square error falls below goal:[6] 

 The network is simulated. 
 The input vector with the greatest error is found. 
 A radbas neuron is added with weights equal to that vector. 
 The linear output layer weights are redesigned to minimize error. 
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Figure 6: Archtecture of radial basis function network.[7] 

 
One of the arguments of the function newrb is spread, which determines the width of radial 
basis functions. The larger is the spread, the smoother is the function approximation. For 
too large spread a lot of neurons are required to fit a fast-changing function. Too small 
spread means many neurons are required to fit a smooth function, and the network might 
not generalize well.[6] 
 
The net input to the radbas transfer function is the vector distance between its weight 
vector µp (IW1,1 in Figure 6) and the input vector x (p in Figure 6), multiplied by the bias, 
b.  
 
The transfer function for a radial basis neuron is:[7] 
 

     2
p pexpradbas b b   x μ x μ . (18) 

 
The bias allows the sensitivity of the the radbas neuron to be adjusted. 
 
We found out that the relation between bias, b, and spread of the function radbas is: 
 

 
0,8326

b
spread

 . (19) 

 
Thus standard deviation σ of the Gaussian function (Equation (14)) is related to spread and 
bias as follows: 
 

 
1

0,8326 2 2

spread

b
   . (20) 
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3 Identification of the measurement characteristic of the CFVN mass 
flow meter  

3.1 Designing the training data 

As mentioned in Section 1.6, every data cluster consists of n = 10 measurement points.  
There were N = 45 clusters spreading as equally as possible over typical pressure and 
temperature ranges for the CFVN measurement system (Section 1.6). Input data, i.e. 
measured values of pressure and temperature, are collected into the matrix MPT: 
 

        

       

1 2 1 1 1 21 1 1 2T

1 2 1 1 1 21 1 1 2

...    ...   ...   ...      ...

 ...    ...    ...     ...       ...
cc c

cc c

n i n N nN n N ni n i n

n i n N nN n N ni n i n

p p p p p p p p p

T T T T T T T T T

       

       

 
 
 
 

PTM . (21) 

 
           1st cluster           ic-th cluster              N-th cluster 
 
Targets, i.e. measured values of the mass flow rate, are collected into the vector qm: 
 
 

        T
,1 ,2 , , ,, 1 1 , 1 2, 1 1 , 1 2...    ...   ...    ...    ...

cc cm m m n m i n m N nm N n m N nm i n m i nq q q q q q q q q       mq . (22) 

 
          1st cluster           ic-th

 cluster            N-th cluster 
 
All measured values of pressure, temperature and mass flow-rate are further collected into 
the   3N n   matrix MPTQ, which represents the training data set. 

 

3.2 Partitioning of the training set 

The training data set is randomly partitioned into two subsets: 
 an estimation subset that is used to build a model and 
 a validation subset that is used to validate the built model. 
 
Number of clusters in each of subsets may be selected freely. We decided to partition the 
training set with respect to the ratio 2 : 1, which means that estimation and validation 
subsets contain 2/3 and 1/3 of clusters (or 300 and 150 data points), respectively. 
 
Our own algorithm for partitioning of the training set into two subsets executes the 
following operations: 
 Matlab function randperm(N) returns randomly permutted integers from 1 to N. The 

argument represents N clusters of measured data.  
 The first nest elements of the vector containing randomly permutted integers represent 

indexes    est ci i  used to extract data clusters from the matrix MPTQ into the matrix  

EPTQ, that represents the estimation data subset. 
 The last nval elements of the vector containing randomly permutted integers represent 

indexes    val ci i  used to extract data clusters from the matrix MPTQ into the matrix 

VPTQ, that represents the validation data subset. 
 
Partitioning of the training subset is schematically represented in Figure 7. 
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Figure 7: Partitioning of the training set (MPTQ) into an estimation subset (EPTQ) and a 
validation subset (VPTQ). 

 
 

3.3 Preparation of data 

To obtain good neural network result some data transformation should be done. Input 
values of pressure and temperature are standardized by substracting a mean and dividing 
by standard deviation.[8] Consequently »standard normal« random variables with mean 0 
and standard deviation 1 are achieved: 
 

  , ,0,  1est s est sp p   , (23) 

 

  , ,0,  1est s est sT T   . (24) 

    
Standardization is essential for achieving good result due to the nature, i.e. radial 
symmetry, of radial basis function (Chapter 2.1). Original values of pressure and 
temperature have very different ranges (Figure 4), but after standardization they lie on 
similar intervals.  
 
It is very important to standardize the validation data using mean and standard deviation of 
data from the estimation subset: 
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 , 


 val est
val s

est

T T
T

T
. (26) 

 
Standardized values of pressure, pest,s and pval,s, and temperature, Test,s and Tval,s, from 
estimation and validation subsets are collected into corresponding matrices PT-sE  and 

-sPTV , respectively. 

 
 

3.4 Modelling of the measurement characteristic 

Firstly, we approximate the function ( , )mq f p T  with the linear regression model. The 

corresponding algorithm is described in Section 3.4.1. The approximative function, given 
as an output of linear regression model, represents the reference for estimation of 
performances of neural network models. 
 
Sencondly, we approximate the relationship between pressure, temperature and mass flow 
rate with two radial basis function network models. Within the second RBFN model prior 
knowledge regarding direct relationship between variables is incorporated. Both RBFN 
models are described in Sections 3.4.2 and 3.4.3. 
 
 

3.4.1 Linear regression model 

From the Equation (2) is obvious that if pressure iz zero then the mass flow rate also equals 
zero. But on the other hand, chosen range of measurement points is distant from the origin 
of the coordinate system. Due to this fact, linear regression with bias, bLR, was selected. 
The linear regression model has the form: 
 
 LR LR

m p Tq k p k T b   , (27) 

 
where kp and kT are coefficients of the approximative plane. 
 
The matrix EPTO is formed by collecting the input data from the estimation subset and a 
column of ones:  
 

 

,1 ,2 ,

T
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...

 ...

1       1      ... 1
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est est est N n

est est est N n

p p p

T T T





 
 

  
 
 

PTOE . (28) 

 
Vector of measured values of the mass flow rate from the estimation subset is: 
 

  T
, ,1 , ,2 , ,...

estm est m est m est N nq q q m,estq . (29) 
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Both coefficients and bias, 
 

  T LR
p Tk k bK , (30) 

 
could be obtained by solving the equation: 
 
  PTO m,estK E q , (31) 

 
where standard pseudo inverse, EPTO

+, is calculated as:[8] 
 

   1T T
  +

PTO PTO PTO PTOE E E E . (32) 

 
Vectors of predicted values of the mass flow rate in data points from estimation and 
validation subsets are calculated as: 
 
  LR

m,est PTOq K E , (33) 

 
  LR

m,val PTOq K V , (34) 

 
where the matrix VPTO is: 
 

 

,1 ,2 ,

T
,1 ,2 ,

...

 ...

1       1      ... 1

val

val

val val val N n

val val val N n

p p p

T T T





 
 

  
 
 

PTOV . (35) 

 
For linear regression model it is not necessary to be built on standardized values. 
 
 

3.4.2 Radial basis function network model NN-q 

The purpose of the radial basis function network model called NN-q is approximation of  
the function ( , )mq f p T . In the process of training of this neural network, input vectors 

are columns from the matrix T
-sPTE  and targets are values from vector qm,est

T. 

 
When the network is trained, the model NN-q takes the following form: 
 
  ,NN q

m q s sq f p T  . (36) 

 
It is used to predict the values of mass flow rates, ,

NN q
m estq   and ,

NN q
m valq  , based on standardized 

values of pressure and temperature from the estimation and validation subsets, 
respectively. 
 
 



Identification of the measurement characteristics of the CFVN mass flow meter 

16 

3.4.3 Radial basis function network model NN-C 

Direct relationship between variables p, T and qm is stated by equation (2). With this prior 
knowledge being incorporated, the function C may be calculated as: 
 

   *,
/

nt d
m

A C CT
C p T q

p R M
  . (37) 

 
The purpose of the radial basis function network model called NN-C is approximation of 
this function. In the process of training of the neural network NN-C, the input vectors are 
columns from the matrix T

PT-sE  and targets are values from the vector Cest
T. 

 
The neural network NN-C takes the following form: 
 
  ,NN C

C s sC f p T   (38) 

 
and it is used to predict the values NN C

estC   and NN C
valC   on standardized inputs from 

estimation and validation subsets, respectively. 
 
With the RBFN model NN-C it is possible to calculate the mass flow rate as follows: 
 

  ,NN C NN Cs
m s s

s

p
q C p T

T
   (39) 

 
We expect that by applying prior knowledge better generalization ability of the neural 
network model will be obtained. 
 
 

3.5 Multifold cross-validation based on random partitioning of the training set 

Parameters of a radial basis function network are the number of neurons in hidden layer 
and spread (or width) of radial basis functions. In order to estimate the approximation and 
generalization abilities of a neural network model with selected parameters, it is Niter-times 
trained and validated on different estimation and validation subsets, respectively. In the 
beginning of every iteration, data clusters from the training set (the matrix MPTQ) are 
randomly divided into estimation subset (2/3 of clusters) and validation subset (1/3 of 
clusters), as described in Section 3.2. Afterwards, each model is trained on estimation 
subset and its performance is checked on both data subsets. Chosen measure of error is 
mean absolute percentage error, mape, which is described in Section 3.5.1. 
 
Performances of a selected model, i.e. its approximation and generalization abilities, are 
obtained by averaging the corresponding values of mape, gained over Niter iterations. The 
procedure is descibed in Section 3.5.2. 
 
 



Identification of the measurement characteristics of the CFVN mass flow meter 

17 

3.5.1 Mean absolute percentage error 

Mean absolute percentage error (mape) is a measure of error of model's predicted values 
compared to the targets. Mean absolute percentage error on the estimation subset, 
 

 
, , , ,
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  , (40) 

 
reflects the approximation ability of the model – accuracy of its predictions on the 
estimation data subset. 
 
Mean absolute percentage error on validation subset, 
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1 val
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m val i m val i
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q q
e
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  , (41) 

 
reflects the generalization ability of a model – accuracy of its predictions on validation data 
subset. 
 
In Equations (40) and (41) the mass flow rate (with superscripted index M), M

mq , denotes 

predicted value by the model M and qm ,max denotes maximum value of measured mass flow 
rate in the training set. 
 
 

3.5.2 Estimation and validation errors 

For the model with selected parameters, the estimation and validation errors are defined as:  
 

 
1

1 iterN

est est
iiter

E e
N 

  , (42) 

 

 
1

1 iterN

val val
iiter

E e
N 

  , (43) 

 
respectively. They represent averages of corresponding mean average percentage errors, 
eest and eval, over Niter iterations. Since the training set is Niter-times randomly partitioned 
into estimation and validation subsets, errors Eest and Eval are more appropriate estimators 
of model performances than particular errors eest and eval. 
 
In the case of RBFN models, the validation error, Eval, also represents the objective 
function for selection of a RBFN model with optimal parameters. 
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3.6 Optimization of parameters of RBFN model 

With respect to the training algorithm of radial basis function network, represented in 
Section 2.2, we expected that if only one neuron is added at every epoch there would 
consequently exist one center of RBF in each cluster (in one of its 10 data points). But 
results of this approach did not meet our expectations – in most cases happened that each 
cluster did not have its own center of RBF, or, in other words, there was more than one 
center in some clusters but none in some others. For an example, have a look at Figure 8. 
 
 

 
Figure 8: Positions of data clusters (blue crosses) from the estimation subset and centers of 
radial basis functions – for RBFN models NN-q (red circles) and NN-C (black squares). In 
this case the estimation subset consist of 30 clusters and the number of neurons is also 30. 

 
 

3.7 Algorithm for determination of models and selection of optimal RBFN models 

We developed a Matlab code with purpose to train and validate all three models. Our aim 
is also determination of the smallest but powerful enough RBFN models NN-q and NN-C. 
 
The following operations are executed within the program: 
 Settings: vector of spreads, vector of number of neurons, number of iterations, Niter,... 
 Loading of measured data. 
 
 Loop for number of neurons. 
 
 Loop for spread. 
 

 Loop for iterations for random partitioning of the training set and training and 
validation of models. 
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 Random partitioning of the training set into estimation and validation 

subsets (Section 3.2). 
 Standardization of pressure and temperature from estimation and validation 

subsets (Section 3.3). 
 Calculation of values of the function C (Equation (37)). 
 Determination of the linear regression model (Section 3.4.1). 
 Training and validation of the RBFN model NN-q (Section 3.4.2). 
 Training and validation of the RBFN model NN-C (Section 3.4.3). 
 Simulation of models over entire input range (not only for measured (and 

standardized) values of pressure and temperature). 
 Calculation of errors eest and eval in the end of each iteration (Section 3.5.1). 
 Plots of measured data and models' outputs within each iteration. 

 
 End of loop for iterations. 
 
 Calculation of the estimation and validation errors, Eest and Eval, for models with 

selected parameters (Section 3.5.2). 
 Plots of models' performances: estE  vs. spread and valE  vs. spread for fixed 

number of neurons. 
 

 End of loop for spread. 
 

 End of loop for number of neurons. 
 Evaluation and plot of performance of each model: 
 
  ,  of RBFsestE f number of  neurons spread . (44) 

 
  ,  of RBFsvalE f number of  neurons spread . (45) 

 
The linear regression model is independent of number of neurons and spread, thus errors 

LR
estE  and LR

valE  theoretically do not change due to variation of these parameters. 

 
In general, parameters at which the objective function (Eest in our case) reaches its 
minimum are selected as optimal parameters of the neural network. 
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4 Results 

4.1  Models' predictions of the mass flow rate 

Diagrams in Figure 9 represent the mass flow rates and values of the function C*, predicted 
by the models. Results of: 

 the linear regression (LR) model are plotted in first column, 
 the RBFN model NN-q are plotted in second column and 
 the RBFN model NN-C are plotted in third column. 

 
Data points from estimation and validation subsets are represented by blue and red stars, 
respectively, and black circles represent the predicted values by the corresponding model.    
 
Within each iteration (represented as a row of diagrams), all models were built on the same 
estimation subset. In case of RBFN models, the values of pressure and temperature were 
standardized. However, their corresponding original values are presented in Figure 9. In 
the first and in the last two rows of diagrams, models with spread equal to 1 and 10, 
respectively, are presented. As mentioned before, the linear regression model is 
independent of spread. 
 
At first sight the linear regression model predicts the values of mass flow rate from 
validation subset quite accurately. In general, neural networks are not good at 
extrapolation. This fact is confirmed by responses of models NN-q and NN-C for 
spread = 1 (Figure 9(a)) – in this case some of validation data lie outside of the range of 
estimation data and consequently predicted values are quite inaccurate. For spread = 10 
(Figure 9(b)) both RBFN models predict values of mass flow rate more accurately, even 
though there are also some validation data outliers with respect to the ranges of estimation 
data. As expected, approximative surface over complete input range is quite smooth. 
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(a) spread = 1 

 

 
(b) spread = 10 

 
 

Figure 9: Predicted mass flow rates by the linear regression model (first column of 
diagrams) and by the RBFN model NN-q (second column); and predicted values of the 
function C by the RBFN model NN-C (third column). For RBFN models, the number of 
neurons is 25 and spread of RBFs is 1 (first two rows of diagrams – (a)) or 10 (last two 

rows of diagrams – (b)). 
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4.2 Performances of models 

In Figure 10 are plotted two diagrams (for RBFN models with 15 and 25 neurons in hidden 
layer) representing estimation and validation errors for all models in dependence of 
spread. 
 
The estimation and validation errors of linear regression model (thin and thick blue lines 
with circles, respectively) are quite constant. Even though this model is independent of 
spread, its error functions are plotted with the purpose of being the references for RBFN 
models. In our opinion, variations of errors of the linear regression model are caused due to 
more or less favourable (random) partitioning of the training data set. If the RBFN model 
NN-q consists of only 15 neurons in the hidden layer, its estimation and generalization 
abilities are not satisfactory (Figure 10(a)). On the other hand, the model NN-C 
approximates the estimation data the most accurately of all models. The same holds also 
for performance on validation data if spread is larger than 1. In comparison to the model 
NN-q with 15 neurons, the same model with 25 neurons possesses better approximative 
and predictive accuracies at smaller values of spread (Figure 10(b)). For spread > 8, its 
performance on validation data is nearly the same as performance of the model NN-C.  
 
In Figure 11 there are two diagrams representing values of the objective function, i.e. the 
validation error, in dependence of number of neurons and spread of radial basis function 
networks. In comparison to the model NN-C, the region with minimal and almost constant 
validation error is for the model NN-q reached at larger values of the number of neurons 
and spread. 
 
As the result of evaluation of the objective function, we may choose the smallest but power 
enough RBFN models: 
 the optimal model NN-q: 25 neurons in hidden layer and spread of RBFs equal to 10, 
 the optimal model NN-C: 15 neurons in hidden layer and spread of RBFs equal to 5. 
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(a) number of neurons = 15. 

 
 

 
 (b) number of neurons = 25. 

 
Figure 10: Estimation and validation errors, Eest and Eval, for all models. RBFN models 

consist (a) of 15 or (b) of 25 neurons. 
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(a) RBFN model NN-q. 

 
 

 
(b) RBFN model NN-C. 

 
 

Figure 11: The objective function, i.e. the validation error,  
of RBFN models NN-q (a) and NN-C (b). 
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4.3 Response of RBFN models at large values of spread 

It is expected that if spread → ∞ (width of Gaussian radial basis function → ∞), there will 
be little difference between predictions of linear regression model and RBFN models. 
Convergence of models' responses (and also errors) is not present for the values of spread 
up to 20, which is shown in Figures 10 and 11. Due to this reason we simulated the models 
and calculated values of error functions, Eest and Eval, for much larger range of spread – 
from 1 to 105. Errors are plotted on diagrams in Figures 13 and 14. 
 
In the vicinity of spread equal to 32 10 , validation errors for both RBFN models increase 
on the level of validation error of linear regression model, which confirms the 
expectations. Global minima of both validation errors are approximately equal (≈ 0,02 %) 
and lie within the range of expected variations. Besides this, the validation error of the 
model NN-q falls below the error of the model NN-C for values of spread approximately 
from the interval (50, 103), where also its minimum is reached. In the case of model NN-q, 
the difference between the value of spread and the ranges of standardized inputs (zero 
mean and standard deviation equal to 1) is very large. That means that only narrow parts of 
radbas (or Gaussian) functions in the vicinity of their peaks are used in the model. In our 
opinion, the reason for this is the difference in rates of nonlinearity of functions 

 ,m qq f p T  and  ,CC f p T , that are approximated by the models NN-q and NN-C, 

respectively. By multiplying the mass flow rate, qm, by /T p , the dominating influence 

of pressure is excluded and consequently the function  ,Cf p T  expresses larger rate of 

nonlinearity than the function  ,qf p T  – have a look at Figure 9. The larger is the 

standard deviation of the Gaussian function, more flat is this function in the vicinity of its 
peak and it also includes smaller rate of nonlinearity over the range of standardized inputs. 
For examples of radbas functions with spread equal to 10 and 50, see Figure 12. If the rate 
of nonlinearity of a function that we want to approximate is smaller, e.g. the function 

 ,m qq f p T , then the corresponding model will consist of RBFs with larger spread. 

 
 

 
Figure 12: Two radbas functions with spread equal to 10 and 50, in dependence of 

standardized variable ps. 

spread = 50 

spread = 10 
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(a) number of neurons = 15. 

 
 

 
(b) number of neurons = 25. 

 
Figure 13: Estimation and validation errors, Eest and Eval, over for all models and for large 

range of spread. RBFN models consist (a) of 15 or (b) of 25 neurons. 
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(a) RBFN model NN-q. 
 
 

 
 

(b) RBFN model NN-C. 
 

Figure 14: The objective function, i.e. the validation error,  
of RBFN models NN-q (a) and NN-C (b) for large range of spread. 
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5 Conclusions 

In this seminar some research in the field of identification of the measurement 
characteristic of the CFVN mass flow meter by radial basis function network models was 
done. The mass flow rate is determined by gas pressure and temperature upstream of the 
critical flow Venturi nozzle. Values of these variables were measured in 450 measurement 
points, which represented the training set of 45 data clusters with 10 data points each. With 
purpose to approximate the relationship between variables p, T and qm, three models were 
trained and validated: 
 the linear regression model (Equation (27)): 

 
 1 2

LR LR
mq k p k T b   ,  

 
 the RBFN model NN-q (Equation (36)): 

 
  ,NN q

m q s sq f p T  ,  

 
 the RBFN model NN-C with integrated prior knowledge regarding direct relationship 

between variables (Equations (38) and (39)): 
 

 NN C NN C s
m

s

p
q C

T
  ,  

   
where 

 
  ,NN C

C s sC f p T  .  

 
The validation error was selected as the objective function for determination of optimal 
parameters of RBFN models. The optimal model is defined as the smallest but powerful 
enough model that reaches the minimum of its objective function. By variation of 
parameters of RBFN models and their multifold training and validation on different subsets 
of randomly partitioned training data set, we selected RBFN models with the following 
parameters as optimal: 
 the RBFN model NN-q: 25 neurons in hidden layer and spread of RBFs equal to 10, 
 the RBFN model NN-C: 15 neurons in hidden layer and spread of RBFs equal to 5. 
 
Both optimal RBFN models reach better generalization abilities than the linear regression 
model. This is a consequence of the fact that even though the rate of nonlinearity of the 
measurement characteristic is small, it have to be involved in the models. 
 
The model NN-C reaches the minimum of the objective function with RBFN structure, 
consisting of less neurons than the model NN-q. Based on the results, it is possible to 
conclude that in our case by incorporating the prior knowledge into the model, the same 
generalization ability can be achieved with »smaller« RBFN model. 
 
It was also proven that if spread → ∞ there is little difference between the predicted mass 
flow rates by the linear regression model and the RBFN models. 
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