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Tires and differential gear



Composition of a radial-ply tire
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Tire labeling

• 6,40-13/6 PR:

– Bias-ply tire

– Tire width: 6,40”

– Wheel-rim diameter: 13”

– Tire-wall height: 0,95 (super 

balloon for D) * 6,40”

– Loading index: PR6

– Velocity index: no index 

(maximum velocity = 150 

km/h)
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• 265/50 R 14 101 V:

– Radial-ply tire (R)

– Tire width: 265 mm

– Wheel-rim diameter : 14”

– Tire-wall height : 0,50 * 265 

mm

– Load index: 101

– Velocity index: V (maximum 

velocity = 240 km/h)



Tire labeling

• Production date: DOT xxyy

– xx => week;

– yy => year.

• Tire load index:
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Tire labeling

• Tire velocity index:

– P => 150 km/h

– Q => 160 km/h

– S => 180 km/h

– T => 190 km/h

– H => 210 km/h

– V => 240 km/h

– W => 270 km/h

– Y => 300 km/h

– VR => above 210 km/h

– ZR=> above 240 km/h
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Difference between radial and bias tire



Tire as a friction wheel - acceleration
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Tire as a friction wheel - braking
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Difference between rolling and sliding



Traction diagram for radial-ply tires and bias-ply tires
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Traction diagram for accelerating and braking
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Micro-contact between tire and driving surface during 

acceleration

12



Micro-contact between tyre and driving surface during 

braking
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4x4 wheel drive
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• Central power splitter without differential gear on a hard 

surface:

• Theoretical tangential velocities:

• Actual tangential velocities:

 

2121 ; MMvv ≠=
14

R1

R2

P

R1,R2 >> 0
R1

R2

P

Power splitter 

without central 
differential 

gear



4x4 wheel drive

• Central power splitter without differential gear on a hard 

surface:
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4x4 wheel drive
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• Central power splitter with a differential gear on a hard 

surface:
Pmot
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4x4 wheel drive
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• Central power splitter with a differential gear – hard surface 

under the rear axle, soft surface under the front axle, straight 

driving:



4x4 wheel drive
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• Central power splitter without differential gear – hard surface 

under the rear axle, soft surface under the front axle, straight 

driving:



TORSEN differential gear
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Mechanical self-locking differential gear with lamellas
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Automatic self-locking differential gear - ASD
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Torque vectoring differential
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Torque vectoring differential

Granzow 2013, str. 5. 23

• Operation during cornering:



Torque vectoring differential
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• Functional assembly of a ZF Vector drive differential gear:

FaFa Fa Fa

Conventional differential 

gear with the angle 

bevel gear

Left unit for torque-

vectoring
Right unit for torque-

vectoring

Multi-disc brake Multi-disc brake



Torque vectoring differential

Granzow 2013, str. 8. 25

• System assembly:



Torque vectoring differential

Granzow 2013, str. 15. 26

• Assembly cross-section:



Torque vectoring differential
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• Principle of operation without torque-vectoring function:

Fa=0 Fa=0

MKG

M1=MKG /2 M2=MKG /2

Fk,1 Fk,2=Fk,1

Granzow 2013, str. 9.



Torque vectoring differential

Granzow 2013, str. 10.
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• Principle of operation by applying the torque-vectoring 

function:



Torque vectoring differential

Granzow 2013, str. 11.

Fa=0 Fa>0
MKG =0 Nm

M1=510 Nm 590 Nm

Fk,1

Fk,2

1100 Nm

1100 Nm

980 Nm

120 Nm

Σ=390 Nm

29

• Principle of operation by applying the torque-vectoring 

function:



Torque vectoring differential

Granzow 2013, str. 18. 30

• Activation of a multi-disc brake of a planetary shaft:



Torque vectoring differential

Granzow 2013, str. 19. 31

• Activation of a multi-disc brake of a planetary shaft:



Torque vectoring differential

Granzow 2013, str. 27. 32

• The torque-vectoring differential is a mechatronic system:



Cornering stifness of a tire
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Lateral traction coefficient and side-slip angle
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Steering angle during cornering
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λ …krmilni kot / steering angle 

)(Rf=λ
 

steering angle



Influence of side-slip rolling during cornering
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Influence of side-slip rolling during cornering
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Under-steered vehicle: cs1>cs2
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If a vehicle‘s velocity is 

increased during cornering, 

the steering angle λ should 

be increased.

µs

R

R=v2/(µs*g)

R=l/[λ−µs*(cs1-cs2)]

Increase of velocity 

for constant R. 



Over-steered vehicle: cs1<cs2
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If a vehicle‘s velocity is 

increased during cornering, 

the steering angle λ should 

be reduced.

µs

R

R=v
2
/(µs*g)

R=l/[λ−µs*(cs1-cs2)]
λ
=

0
 s

t.

Increase of velocity 

for constant R. 



Influence of a side wind

• Under-steered vehicle (cs1>cs2):
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The centrifugal force 

stabilizes the wind force.



Influence of a side wind

• Over-steered vehicle (cs1<cs2):
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The centrifugal force de-

stabilizes the wind force.



Vehicle stabilization during cornering

• Under-steered vehicle:

• Over-steered vehicle:
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Critical velocity of over-steered vehicle
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• A critical velocity of the over-steered vehicle is the velocity at 

which the vehicle can negotiate curves with a zero steering 

angle, if subjected to a lateral disturbance (e.g. wind blow): 



Position of steered wheels

>0 <0
=+0,3/+1,5 =-0,5/-2
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• Camber angle:

– Nullifies bearing clearance.

– Positive camber angle reduces lateral forces during cornering.

– Negative camber angle increased grip during heavy cornering.



Position of steered wheels

=5-10

45

• Lateral slope of a pivot line:

– It causes a raise of the vehicle‘s front part during a steering 

maneuver.

– A consequence is self-alignment of the steering wheels if a 

driver releases a steering wheel.



Position of steered wheels
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• Caster angle:

– Positive caster will make 

the vehicle more stable at 

high speeds, and will 

increase tire lean when 

cornering.



Position of steered wheels
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• Toe angle:

– The angle derived from pointing the tires inward or outward from 

a top view.

– The steering mechanism is pre-stressed to nullify clearance.

– Reduces lateral wheel twisting.
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