Prof. dr. Marko Nagode

Marko. Nagode @ FS. Uni-Lj. SI

507 soba

Tajnica: Silvia Brenčič 510 soba

Pišemo z vodoravnja k1 k2

Vodoravnja obsega 5 uprašanj

2 točki in uprašanje

Tri vrste uprašanj: Lahka, Srednja, Težka

s = 2 × l + 2 × s + 1 × t

2 točki = 4 × 0,5 točke

5 × 2 = 10 točke (maximum)
Kako opraviti ITPIT?

Piše se z kolokvija

\[
\frac{K_1 + K_2}{2} \geq 5,5 \land K_1 \geq 4,5 \land K_2 \geq 4,5 \checkmark
\]

ITPIT opravljeno s kolokvijom

\[
K_1 = \emptyset \land K_2 \geq 5,5 \rightarrow \text{pridajite na ITPIT}
\]

\[
K_1 \geq 5,5 \land K_2 = \emptyset \uparrow \text{pozitivna ocena}
\]

\[
K_1 = 4,5 \land K_2 = 5,5 \rightarrow K_1
\]

\[
K_1 = 5 \land K_2 = 5 \rightarrow U = K_1 + K_2
\]

\[
K_1 = 7,5 \land K_2 = 4,5 \checkmark
\]
\[k_1 = 2.0 \land k_2 = 2.5 \Rightarrow k_1 + k_2 < 5.5 \Rightarrow P + U \]

P - IZPIIT 12 NALOG (60 MINUT)
U - IZPIIT 12 KOMPLETNÉ TEORIJE \(k_1 + k_2 \) (60 MINUT)

\[P \geq 5.5 \land U \geq 5.5 \Rightarrow \checkmark \]
REN, GLODEJ: STROJNI ELEMENTI

REN, GLODEJ: STROJNI ELEMENTI

UVOJ V GONILA, TORNAL, JERKENSKA IN VERIČNA GONILA

ROLF MATEK: MASCHINEELEMENTE

FLAŠER, GLODEJ, REN: TOBNIŠKA GONILA

 NA ITPITU MORA BITI DOŠELENA OCENA ≥ 5,5 V VSALEM PRIMERU!

VEDNO SE MORATE PRIJAVITI NA ITPITU! ZA UPIS OCENE, AHI ŽA PRISTOP Č ITPITU.
F₁, M₁, P₁, T₁, ... OBREMEŠNITVE

FUNKCIJALNOST (1.0 ... 0.0) OZUARA
Potrebno opredeliti možne vrste oluvar.
Za usavo vrsto oluvar izzibere kriterij poškodbe.
GLEDE NA KITERIJ POŠKODBE IZBERE METOVD UREDNOSTA.

CILJ PREDMETA SE JE NAUCITI UREDNOSTI RAZLIČNE STROJNE ELEMENTE!
17 DELEK

KOMPONENTA

ELEMENT : NAJMANJŠI GRADNIK, KE SE VEČ NE DELI (VIJAK, KOVICA, ŽVAR,..)

TRENUTNI

LOM - PLASTIČNI (ŠILAV MATERIAL)
- ZRHKE (ßRHEK MATERIAL)

UTRUJENOSTNI LOM

LEŽENJE
Statične materialne lastnosti

Statična obremenitev

F vs. t

N - število obremenitvenih ciklov

$\sigma_{\text{max}} < R_m$

Uredno tednost R_m

Napetost σ_{max}

Zdržljivost

σ_{max} - napetost vrednotenje
ZI LAU MATERIJAL
Z NEITRATIVO
MEJO TEČENJA

$6_{dop} = \frac{R_{p0.2}}{2}$

ZEHLE MATERIJAL

$6_{dop} = \frac{R_m}{5}$

KRHEI ALI
PLASTIFIKI LOM!

$R_{p0.2} \rightarrow 0.2\%$ PLASTIFIKNE DEFORMACIJE $\varepsilon_p = 0.002$
RAŽTROŠI STATIČNIH MATERIJALNIH LASTNOSTI

\[
\begin{align*}
\sigma & \quad R_{mn} \\
\varepsilon & \quad R_{m2} \\
\ldots & \quad R_m \\
\ldots & \quad R_{m1}
\end{align*}
\]

M. Št. ELEMENTOV V VTORCU POPULACIJA

\[R_m \quad \text{NAJLIČNA SPEMENJIVAČA} \]

\[f(R_m) \]

\[\int_{-\infty}^{\infty} f(R_m) \, dR_m = 1 \]

\[F(R_m) = \int_{0}^{R_m} f(R_m) \, dR_m = 1 - 0.975 \]

KUMULATIVNA FUNKCIJA VERJETNOSTI

\[A = 0.975 \]
VISOKA KVALITETA PROIZVODNJE

\[G_m - \text{STANDARDNA DEVIACIJA} \]

NITKA KVALITETA

\[\overline{R_m} = \frac{\sum_{i=1}^{n} R_{mi}}{n} \]

\[G_{dop} = \frac{\overline{R_m}}{\sigma} \]

\[G_{dop} = \frac{\overline{R_m}}{\sigma} \]

RAFRANJSI MERIMO S STANDARDNO DEVIACIJO \(G_m \)

\[G_m = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (R_{mi} - \overline{R_m})^2} \]
Weibullova gostota poradnolitve verjetnosti:

\[f(x) \]

\[A = 0.15 \]

Median

Srednja Urednost

Normalna gostota poradnolitve verjetnosti

Srednja Urednost
VEĆOSNO NAPESTUO STANJE

RAUNINA V ČETERI DELUJETA NAPESTO{}

OSTA RAUNINA DRUGA SMER

VEĆOSNO NAPESTUO STANJE

6_M = \frac{M}{W_0}

6_F + 6_M = 6 ENOOSNO NAPESTUO STANJE U RAUNINI B-B
STATIČNI MOMENT PRERETA

\[\gamma_f = \frac{T \cdot S}{I_x \cdot b} \]

\[S = A \cdot y_a \]

DELOZE U RAUNINI A-A

DELOZE U RAUNINI B-B

ISTA SMER DRUGA RAUNINA

\[\gamma_x = \gamma_x; \quad \gamma_{xy} = \gamma_y; \quad \text{OSTALO} \quad \gamma_{x'y'} = \begin{pmatrix}
\gamma_x & \gamma_{xy} & \gamma_{xz} \\
\gamma_{yx} & \gamma_y & \gamma_{yz} \\
\gamma_{zx} & \gamma_{zy} & \gamma_z
\end{pmatrix} \]
Hipozeta najvećih normalnih napetosti

\[6^v = \frac{1}{2} \left(6 + \sqrt{6^2 + 4 \cdot 8^2} \right) \]

\[6^v = \phi \Rightarrow 6^v = 6 \]

\[7^v = \phi \Rightarrow 6^v = 6 \]

Hipozeta najvećih strižnih napetosti

\[6^v = \sqrt{6^2 + 4 \cdot 8^2} \]

\[6^v = \phi \Rightarrow 6^v = 2 \cdot 8 \]

\[7^v = \phi \Rightarrow 6^v = 6 \]

šilaj material

Istražiti mejo tečenja
HIPOTEZA NAJVEČJEGA PREOBRATNEGA DELA

\[6_v = \sqrt{6^2 + \frac{3}{3^2}} \]

\[6^\circ = \phi \Rightarrow 6_v = \sqrt{3} 6^\circ \]

\[\alpha < 45^\circ \]

\[6_v = 6^\circ \]

\[\leq 6_{\text{dop}} \]

ZILAVI HAT.

\[\text{Z NEITRAHTNO KEJOTECENJA} \]

VON MISES-OVA HIPOTEZA

\[\text{STRIŽENA SPECIFIČNA} \]

\[\text{DEFORMACIJA} \]

\[\text{STRIŽENI MODUL} \]

HOLOMOV TALON \[\sigma \]

ZA STRIŽINE NAPETOSTI
URSTE OBREMEMITEV

OBREMEMITVE

DETERMINISTIČNE

STATIČNE

PERIODIČNE

UTRIPNE

IZMENIČNE

... ERGODIČNE

STAČIONARNE

NEERGODIČNE

NAPLJUČNE

DINAMIČNE

STATIČNE \rightarrow \text{tehki ali plastični lom}

DINAMIČNE \rightarrow \text{utrujenostni lom}

\mathcal{F}(t, \omega) \rightarrow \mathcal{F}(+) = A_1 \sin(\omega t) + A_2 \cos(\omega_2 t)
STATIČNA

$F = \text{const}$

UTRIJENA

$F(t) = F_m + F_a \sin \omega t$

$F_m = F_a$

1) MENIČNA

$F(t) = F_a \sin \omega t$

NAPREMENČNA

$F(t) \chi$

NESTACIONARNA

STACIONARNA

VŽIVNOSTI

F_1

0

t_1

$F_i(t_i)$

F_1

0

t_1

$F_i(t_i)$

F_m

0

t_1

$F_i(t_i)$
\[F(t) = \lim_{m \to \infty} \frac{1}{m} \sum_{i=1}^{\infty} F_i(t) = M_1(t) \]

PRVI MOMENT

\[H_2(t) = \lim_{m \to \infty} \frac{1}{m} \sum_{i=1}^{\infty} F_i^2(t) \]

DRUGI MOMENT

Daje informaciju o raztrosu obremenitve.

\[\overline{F} = \lim_{T \to \infty} \frac{1}{T} \int_0^T F(t) \, dt = M_1 \]

\[M_2 \overline{F}_1 > M_2 \overline{F} \]

\[F(t_1) = F(t_2) = \ldots \]

\[E_{R} G_{O} D_{I} C_{H}_{E} I_{N}_{A} T_{E} Y_{E} V_{E} \]

\[M_2(t_1) = M_2(t_2) = \ldots \]