
Machine Vision and Applications (2015) 26:485–494
DOI 10.1007/s00138-015-0683-0

ORIGINAL PAPER

Automating shockwave segmentation in low-contrast coherent
shadowgraphy

Jaka Pribošek1 · Peter Gregorčič1 · Janez Diaci1
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Abstract The paper presents a novel method for auto-
matic segmentation of the low-contrast shadowgraphs that
are acquired during the examination of the laser-induced
shockwaves evolution. The method is based on two-stage,
active-contour algorithms. First stage ensures global robust-
ness, but it is locally inaccurate. It is implemented by
traditional snake based on texture cues. The outcome serves
as initialization to the second refining stage detection. In the
second stage the detection is robust only locally and improves
local accuracy. To do this, we introduce a greedy-snake algo-
rithm.Local optimum is searchedwith respect to responses of
steerable filtering and edge orientation similarity by exploit-
ing the Bayesian formalism. The paper presents validation
of the method on large data set of low-contrast shadow-
graphs by comparison to themanual segmentation technique.
The obtained results demonstrate overall good performance,
robustness, high accuracy, and objectivity of the method.

Keywords Low-contrast segmentation · Shockwave ·
Laser-induced breakdown in air · Active contours ·
Low-contrast shadowgraphy

1 Introduction

Studying the shockwave phenomena is of a great importance
in many different areas of physics and applied sciences and
finds its use in a wide spectrum of medical applications [1].
Multiple numerical and experimental studies on shockwaves,
their induction mechanisms, and their propagation under
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various circumstances have been recently demonstrated.
Among those, the study of optodynamic energy-conversion
efficiency [2], derivation of equations of state [3,4], and
validation of analytical and numerical models proposed by
various research groups [5] are of importance for deeper
understanding of shockwave physics and material science.

Over the past few years, various different systems for
shockwave inspection, involving Schlieren imaging tech-
nique [6,7] and shadowgraphy [8], have been developed and
used. In both techniques, the observation of transient phe-
nomena is possible due to the variations of refractive index of
themedium [9].High-contrast shadowgraphs canbeobtained
with set-ups where large variations in refractive index occur.
This makes Schlieren and shadowgraphic techniques suit-
able mainly for observations of shockwaves in solids and
liquids. On the other hand, extremely low contrast of shad-
owgraphs is encountered in experiments with gases, where
the refractive-index variations are significantly smaller than
in solids or liquids [10,11]. Additionally, the pressure of the
shockwave front is fading away by propagation, which also
results in lower contrast of the acquired images. This makes
the observation of shockwaves in gases a challenging prob-
lem. In order to overcome these problems, improvements
of existing Schlieren visualization techniques has been pro-
posed by Vogel et al. [10] to increase the sensitivity of the
imaging technique and assure images having a higher con-
trast. However, there is still a lack of experimental studies
encountering challenging visualization and data analysis in
low-contrast shadowgraphs.

Autonomous computer-controlled systems for studying
laser-induced plasma and shockwave phenomena have
recently been reported [8], which allow the creation of large
shockwave image dataset necessary for validation of ana-
lytical and numerical models. The current data processing
involves time-consuming complex manual shockwave seg-
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mentation technique [12], and automating these tasks would
facilitate the dataset creation.Up to nowno thorough studyon
image processing on laser-induced shockwave shadowgraph
can be found in the open literature. Nevertheless, for high-
contrast images, many standard image processing techniques
may yield good results [13,14]. However, these techniques
are insufficient for the processing of low-contrast shadow-
graphs, where high-level algorithm for image segmentation
is required. The main aim of this paper was to present a novel
two-stage segmentationmethod based on active contours that
allows automated shock wave segmentation in low-contrast
shadowgraphs.

2 A background of laser shadowgraphy

In shadowgraphy, white light seems to be a preferable choice
for illumination of wide variety of applications due to its
flexibility, low-cost, and low-coherence yielding good image
quality, i.e., high signal-to-noise ratio [9]. Here, typical pulse
durations of spark gap light sources are in the range between
1 and 10 ns. However, very high-speed phenomena, such as
plasma ignition and shockwave generation, propagate with
velocities up to 600 and 100km/s, respectively [8,11]. There-
fore, in these cases a very short illumination of less than
100ps is required to achieve a spatial resolution of about 10
µm. Consequently, a short laser pulse is the only option for
illumination ensuring a high spatial resolution.

A coherent-laser illumination introducesmany drawbacks
regarding image quality, such as the presence of noise that
is caused by laser speckles and diffraction pattern, clearly
visible in Fig. 4a as a regular pattern of fringes. Here, Fig. 4a
is acquired 132 ns after the laser breakdown in air and a 30-
ps, green-laser pulse was used as an illumination source (see
experimental setup in Refs. [8,11]). Interference phenomena
that appear due to the coherent illumination are undesirable
and strongly impede the subsequent image processing. From
Fig. 4a it is visible that the shockwave boundary is rather
indistinctive on the low-contrast shadowgraph image hin-
dering robustness of shockwave detection. It is, therefore,
important to incorporate other image cues for successful
detection. To do this, the understanding of image formation
is crucial.

Figure 1 depicts a typical situation where coherent light is
passed through a shockwave and collected by an image detec-
tor. Black dots on the left-hand side of Fig. 1 represent the
unique and static speckle pattern in the illumination which
can be priory acquired as a background image. Once the
light passes through the shock wave, the speckle pattern gets
distorted and displaced behind the object due to the shock-
wave refractive-index gradient, as schematically presented
on the right-hand side of Fig. 1. Shortly before the shockwave
is generated (e.g., typically 3ms before the measurement)

Fig. 1 Distortion of the static laser speckles pattern due to the light
deviation

we acquire and store the background image. Subtracting the
background from the shockwave image improves the overall
SNR and yields the important change in the texturewithin the
observed object. This way, we turn the laser speckles, often
considered as undesired, into an advantage in the context of
image processing.

3 State of the art

We have acquired a dataset of 175 high-contrast images of
shockwaves in water and 682 low-contrast shockwaves in air
using the setup reported inRef. [8]. Fromall images, acquired
background is subtracted to improve SNR and to generate
important image cues as described in Sect. 2. Three well-
established state-of-the art methods have been employed to
assess their potential for segmentation of shockwave images.
The first method is simple image binarization employing
Otsu’s automatic threshold [15] followed by morphologi-
cal closing operation. the second method is hidden Markov
Random Field segmentation followed by expectation maxi-
mization algorithm as proposed by Zhang et al. [16]. Markov
randomfield is also basis formultiple state-of-the art segmen-
tation algorithms such as GrowCut and GraphCut [17,18].
The third algorithm is active contour introduced by Chan
and Vese [19]. This is a reasonable choice for segmenta-
tion of low-contrast shockwave images since the edges are
more likely to be less prominent there. The three algorithms
have been implemented in Matlab and employed to segment
both datasets. The obtained results (Fig. 2-upper row) show
that the state-of-the art methods provide good segmenta-
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Fig. 2 Comparison of state-of-the-art methods on typical high- and low-contrast shadowgraphs. Note the red outline showing the manual segmen-
tation of trained human expert (color figure online)

tion results on majority (92%) of high contrast images. The
final contour of high-contrast shockwaves could be easily
obtainable by an additional processing step such as mor-
phological filtering and region boundary extraction. When
applied to images with low-contrast shockwaves in gases, all
3 state-of-the-art methods failed to segment shockwaves in
low-contrast images without any trace of success among 682
images (Fig. 2-lower row).

As evident from extremely poor performance of the state-
of-the-art methods, a domain specific approach is necessary
to assure good shockwave segmentation in low-contrast
images. Many new modifications of existing methods for
low-contrast images were recently reported [20–22], where
none of them suit our need. In the following, we describe
a domain-specific segmentation algorithm that incorporates
the principles of image creation described in Sect. 2 to assure
good segmentation performance.

4 Algorithm for automatic segmentation

To assure successful shockwave boundary detection, we
choose a flexible framework for segmentation. Snakes
and active contours have been already proved as promi-
nent methods in a wide variety of applications and gain
extreme attention due to their high flexibility and versatility

[23–25]. To facilitate understanding of the shock-segm-
entation method, we present here a brief overview of
the active contours, i.e., snakes used hereafter. A detailed
description and derivation of snakes can be found elsewhere
[26,27].

4.1 Active contours

Let s(p) = [x(p), y(p)]T be the coordinates of a closed
contour that encircles the object of interest. Here, p stands for
the parameter running along the closed contour. As proposed
by Kass et al. [26], the snake energy E consists of internal,
Eint , and external, Eext , energy as follows:

α(p)s′′(p) − βs(4)(p) − ∇Eext (s(p)) = 0 (1)

Equation (1) is solved iteratively with gradient descent
method as proposed by Kass et al. [26] using a finite dif-
ference approximation of the spatial derivatives.

Active contours offer a flexible framework in terms of
energy definition. However, it is a great challenge to define
a smooth and convex optimization function in a single step.
To overcome non-convex optimization functions full of local
minima, we try to mimic a human-hierarchical approach to
boundary-segmentation problem. We propose a two-stage
approach. Here, the first stage is inaccurate but globally
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Fig. 3 Two-stage snake algorithm

Fig. 4 aOriginal image; b image after background subtractionwith arrows indicating the diffraction pattern; c texture image; d detected boundaries

robust. This stage is then followed by refining stage, which is
globally not robust, but locally accurate. To achieve this, we
propose the use of two different image cues in each stage. The
first stage is regional-based segmentation, where texture cues
are exploited to approximately segment the contour. The seg-
mentation is then subsequently refined by second-stage, i.e.,
edge-based segmentation. Here, the contour is modified by
employing the boundary information. Both stages incorpo-
rate active-contour algorithms, which are in detail presented
in the following subsections. The entire algorithm is depicted
in Fig. 3.

4.2 Coarse detection

The pre-acquired background image is first subtracted from
every upcoming image (i) to increase the contrast between the
object of interest, and (ii) to generate the texture differences,
as described in Sect. 2. The diffraction pattern around shock-
wave remains visible after background subtraction (e.g., as
evident in Fig. 4b), which obstruct the segmentation process.
In order to avoid the diffraction effect, we exploit the tex-
ture cues that arise due to speckle displacement phenomena
as mentioned in Sect. 2. This texture, although not obvious
to human eye, is revealed by calculation of the image vari-
ance in regions of 5 × 5 pixels. On the other hand, variance

filtering also eliminates the diffraction pattern, as the dif-
fraction lobes are homogenous features and region size is set
small enough. As a result, the variance filtering yields a high-
intensity region correspondingmainly to the shockwave (e.g.,
see Fig. 4c). Region-based segmentation, e.g., described by
Ivins and Porrill [27], is usually applied for the segmentation
task. We simplify their approach by crude direct definition
of the external-energy gradient that is required for active
contour formulation. Since we know that the object appears
approximately in the center of the image [xc, yc], we define
the external-energy gradient at each pixel [x, y] that points
either towards or outwards the center and has a magnitude
proportional to the image intensity drawn from the variance
image Ivar :

∇Eext (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

−Ivar
⇀
v∥

∥
∥

⇀
v

∥
∥
∥
; Ivar ≥ Ithresh

(1 − Ivar )
⇀
v∥

∥
∥

⇀
v

∥
∥
∥
; Ivar < Ithresh .

(2)

InEq. (2),
⇀
v = [x, xc, y, yc] stands for the orientation vector,

and Ithresh defines a threshold value, which decides whether
the vector at some location pushes the snake towards the
center or repels it away from the center. A very basic version
of the snake algorithm is then launched using this external-
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energy gradient. The snake is initialized by an elliptic region,
which is placed at the center of the image. By setting Ithresh
to be the Otsu’s threshold level [15], the snake is converg-
ing fast and yields good approximations to the shockwave
contour. While the snake is evolving in the presence of weak
external energies, the contour points may concentrate at cer-
tain location due to relatively high snake shrinkage (alpha).
This is a common problem of snakes. In order to avoid these
effects, we release the internal energies before entering the
refinement stage. To achieve this, the snake is resampled
equidistantly along the contour.

4.3 Fine segmentation

The extracted contour, obtained with the coarse detection
stage, is close to desired shock contour. However, the local
refinements are still necessary. For this purpose we use the
Greedy-snake approach [28], where the contour is locally
optimized to the shockwave boundary. Since the contrast
at the edges of the shockwave is low and the edge is thin,
classic gradient-based-edge detection yields poor results. In
the literature, Hessian ridge detector is often applied for this
task [29]. We use steerable filters [30] to detect ridges and
extract their orientation. Here, we employ the Laplacian of
Gaussian filters at three different scales with (σu, σv) =
{(1, 3), (2, 6), (4, 12)}Ateach scale, thefilters are oriented at
six different orientations. θ = {0, π/6, π/3, π, 2π/3, 5π/6}
By deriving the anisotropic Laplacian of Gaussian and intro-
ducing the coordinate rotation by an angle θ , we end up with

G(σu, σv, θ) = − 1

2πσuσv

×
(

− 1

σ 2
u

− 1

σ 2
v

− (x cos θ + y sin θ)2

σ 4
u

− (−x sin θ + y cos θ)2

σ 4
v

)

× exp

{

− 1

2

(
(x cos θ + y sin θ)2

σ 2
u

+ (−x sin θ + y cos θ)2

σ 2
v

)}

(3)

Figure 5 shows the filter bank thatwas calculated fromEq. (3)
using the parameters described above and constant filter win-
dow size of 51 × 51 pixels.

Convolving the input image with steerable filters yields
high responses at the thin black outline of the shock wave as
shown in Fig. 4d. For efficient implementation to avoid the
high computation costs, all convolutions were implemented
by the use of Fourier transform. The filtered I (σu, σv, θ) is
then given as

I (σu, σv, θ) = F−1 {F{I }F{G(σx , σy, θ)}, } (4)

Fig. 5 Steerable filters calculated by Eq. (3)

where F{} and F−1{} denote the Fourier transform and
its inverse, respectively. The image of detected boundaries
(Fig. 4d) is determinedby taking themaximumfilter response
at each pixel location. The orientation of this edge is drawn
from the filter orientation θ that yields that response:

Iedge = max(I (σu, σv, θ))

θedge = argmax
θ

(I (σu, σv, θ)) (5)

Following the idea of Radeva and Serrat [31] that the snake
should be attracted only to high-level edges with similar ori-
entation to the snake tangent, we introduce the Bayesian
formalism in order to combine boundary and orientation
cues to a robust high-level detection. Boundary likelihood
p(ybound|X) for a given position of the image X = [x, y] is
constructed by simple normalization of Iedge. In order to con-
struct the orientation likelihood p(yorient|X), the orientation
θedge is compared to the tangent orientation of the snake at
every iteration. Orientation similarity measure is introduced
for this task. Given the snake contour, the tangent angle at
every node of contour is calculated by

ψ = atan2(ẏ, ẋ) (6)

ψre f =
{

ψ; ψ ≤ 0

ψ + π; ψ > 0
, (7)

where atan2() is the arctangens function defined on all four
quadrants.

For similarity measure, a cosine function is introduced to
weight edges with similar orientation to the starting curve
and suppress edges with perpendicular orientation. The ori-
entation likelihood is thus formulated as

p(yorient |x) = 1

2
| cos(θedge − ψre f )| + 1

2
. (8)

Search of local optimum is accomplished by the Bayesian
formalism. We want to combine the orientation likelihood
p(yorient|x)with boundary likelihood p(ybound|x) to improve
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Fig. 6 Greedy search algorithm: a boundary likelihood with initial contour; b orientation similarity coded with color temperature; c joint likelihood
with red cross representing the detected local optimum (color figure online)

Fig. 7 Extension springs compensate external energies of Greedy snake. Left the red springs span between evolving snake and corresponding local
maximum, while the blue springs span back to the texture based snake. Right the amplitude of the blue springs according to the angular position
(color figure online)

the detection. Assuming both likelihoods are independent,
their joint likelihood can be formulated as

p(yjoint|x) = p(yorient , ybound |x)

p(yorient, ybound |x) = p(yorient|x)p(ybound |x).
(9)

To make overall tracking with combined probability den-
sity functions less prone to failure, the Gaussian kernel with
variance of 30 pixels is superimposed over the joint likeli-
hood. This gives more weight to locations near current snake
position and less to more distant one. The variance of the
Gaussian kernel was optimized empirically and corresponds
to the expected positional errors of coarse detection stage.
Increasing or decreasing the variance of the kernel does, how-
ever, not affect the segmentation significantly.

The final joint likelihood can be then seen in Fig. 6c. Local
maxima of the joint probability, the so-called Maximum A
Posteriori (MAP), depicted with red cross in the Fig. 6c, is
then used as the next most possible location xmap

xmap = max
x

(p(yorient, ybound |x)) (10)

Once the local optimum for each snake’s node s(p) has
been determined, the snake is attracted to them. This proce-
dure is iterated few times to obtain the global optimum of

the snake’s energy. Performance of the proposed scheme has
been found sufficient for the cases where shockwave bound-
aries are continuous, smooth, and visible. However, this is
not the case in some parts of our shadowgraphic results. As
is clearly visible from Fig. 4a, in our case the edge responses
at upper and lower caps of the shockwave are weak with
undeterminable orientation. This results inweak or erroneous
external energies (e.g., the red springs in close-up window
of Fig. 7). In such situations internal energies undertake the
control of the snake’s shape which often yields unsatisfac-
tory results as depicted with dotted line in close up window
of Fig. 7. To alleviate this problem, we introduce additional
external forces at both upper and lower parts of the curve
(e.g., see the blue springs in Fig. 7).

The forces act as extension springs pulling the evolving
snake towards to the initial texture snake. The stiffness of the
springs k(ϕ) is given with superimposing two normalized
Gaussian functions that have their centers at π/2 and 3π/2,
respectively (e.g., see Fig. 7). Thus, the external force of the
pth node can be defined as

FMAP = max(p(yorient, ybound |x))||sevolv(p) − xmap(p)||
(11)

Fprior = κ(ϕ)||sini t (p) − sevolv(p)||. (12)
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Table 1 Snake settings

Detection Iterations of
each stage

Snake
“shrinkness” α

Snake
“smoothness”β

Coarse 25 0.01 0.8

Fine 25 0.01 0.2

The external energy is then formulated as a sum of the force
towards local maxima FMAP and prior force Fprior in no-
contrast region. This way, the driving of the snake by sole
internal energies or erroneous external energies is prevented.

5 Results and discussion

Our dataset consists of 682 images of low-contrast shock-
waves acquired between 500 and 1500µs after laser-induced
breakdown in air. Image size is 1392 × 1040 pixels. All
images are first manually segmented by a trained expert,
which last approximately 20h. The manual segmentation
involves manual selection of node points with subsequent
B-spline interpolation, as described in [12]. It should be
highlighted that low contrast and the presence of diffraction
lobes seriously hinder the human perception. Manual seg-
mentation is, therefore, not an easy task and may in many
cases depend on operator interpretation. After segmentation
all contours are equiangularly sampled to 80 contour points

Table 2 Results of complete detection

RMS
[pix]

Standard
deviation
[pix]

Max error
[pix]

Min error
[pix]

Coarse test set 1.79 2.35 19.75 −17.7

Fine test set 1.77 2.22 19.5 −13.06

Coarse
validation set

1.85 2.57 31.12 −25.92

Fine
validation set

1.84 2.5 29.71 −17.54

and transformed to polar coordinates [r, ϕ] with origin placed
at the center of the image (as visible in the left-hand side of
Fig. 9). The manually segmented curves serve as reference
ground-truth and are used to evaluate the performance of the
proposed automatic method. Once segmented, the dataset
is divided into training and validation set. Since the opti-
mization of algorithm involves tuning of several parameters
simultaneously and whole algorithm takes 30s to segment
the image, the training set has been lowered to 50 images to
avoid prolonged optimization. It turned out that 50 images
were sufficiently representative dataset to optimize the algo-
rithm. The validation set thus includes the remaining 632
image.

The algorithm of automatic segmentation has been imple-
mented in Mathworks Matlab. The snake is initialized with
the elliptical region with horizontal and vertical semi-axis

Fig. 8 Coarse (1–25) and fine stage (30–50) of shockwave segmentation. The number of iteration is shown in top left-hand side of each image
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Fig. 9 End results for typical successful (left) and failed segmentation (right) of the proposed method

being 450 and 650 pix, respectively. The snake comprises 80
equidistant points along the curve. The algorithm has been
empirically optimized, such that α and β and the number
of iterations were manually varied until satisfactory perfor-
mance on a training-set consisting of 50 imageswas obtained.
Simple scalar metric derived from radial errors (e.g. RMS) is
used to help us empirically determine the appropriate para-
meters. Good performance has been generally achieved with
stiffer snake in the coarse step, while in refinement stage
the internal energy is then somewhat lowered to achieve a
more detailed contour (lower β). Final settings of the snake
are represented in Table 1. The behavior of the algorithm is
then fully determined by the obtained parameters (number of
iterations, α and β) which are kept constant in segmentation
process.

Figure 8 shows the iteration steps in both coarse (first
row) and fine stages of detection (second row). As evident,
the snake converges fast and outlines the contour approxi-
mately within the coarse stage of detection. In the refinement
stage, its shape is altered to better match the shockwave
boundaries.

Themethod has been verified on a validation set consisting
of 632 images by comparing the automatically detected out-
lines with reference ones. This way, the discrepancy between
the snake and the corresponding reference contour is esti-
mated by observing the radius error r(ϕ) after both coarse
and fine stages of segmentation. The obtained results are rep-
resented in Table 2. The final RMS evaluated on validation
set obtained is 1.84 pix and standard deviation of radius error
2.5 pix.

Figure 9 demonstrates a typical successful and failed
segmentation from the validation set. As obvious from the

right-hand side of Fig. 9, the highest errors occur at lower
cap of the shockwave (i.e. subregion D), where the shock-
waves pressure gradient and correlated texture contrast is
significantly lower than elsewhere. This corresponds to the
direction of the laser pulse as depicted in Fig. 1 and already
pointed out by Gregorčič et al. [12]. Another region where
high errors occur is the region of interference fringe (i.e.
subregion C). Here, the error occurs especially due to poor
coarse detection and since high responses of steerable filters
may sometimes be present due to interference. Despite that,
the segmentation algorithmmaintains error to be less than 30
pix in problematic regions in worst case, while for the rest of
the curve the error remains lower than 5 pix as visible from
the right-hand side of Fig. 9.

The left-hand side of Fig. 10 present the histogram of
radius errors of all nodes of all curves in validation set. It
shows that the cases where segmentation may be considered
less successful (e.g. as in the right-hand side of as in Fig. 9)
are extremely rare. In addition to that, an angular depen-
dency of errors has been studied. RMS of radial error as
well as minimal and maximal errors has been determined
for each angular position using the whole validation set.
The results are presented in the right-hand side of Fig. 10.
Regions C and D form Fig. 9 that are marked by red and
green box in the right-hand side of Fig. 10, respectively,
coincide well with the angular positions of extreme error
values.

All in all, the segmentation was successful on all images,
with good performance in comparison to manual segmen-
tation technique reported in Ref. [12]. Taking this fact into
account, we find the automatic segmentation method accu-
rate, very robust, and also objective.
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Fig. 10 Left Histogram of radius error evaluated on validation set. Right Angular radius error evaluated on validation set

6 Conclusions

With the presented two-stage, active-contour-segmentation
method we demonstrate a practicable and efficient solu-
tion for three common problems that occur in evaluation
of laser shadowgraphs of weak shock phenomena in gases:
(i) diffraction patterns, (ii) general lack of image contrast,
and (iii) laser speckles. By exploiting different image cues,
textures, and boundaries, the method enables fast, robust,
accurate, and objective detection of the shockwave bound-
ary. The performance of the algorithms has been trained on
training set consisting of 50 shockwaves and tested on valida-
tion set of 632 manually segmented reference images. Good
segmentation performance with RMS lower than 2 pix has
been obtained. The method opens the way to the analysis of
large datasets and thus opens new prospects for the examina-
tion of laser-induced shockwaves. Large datasets will enable
additional improvements regarding the image processing by
incorporation of higher level statistics, such as active shape
models.
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