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Abstract We present a fast, displacement-measuring,
single-pass, two-detector homodyne quadrature laser inter-
ferometer and compare its performance with an arm-com-
pensated, proportional, integral-derivative-controlled
Michelson interferometer. Special attention is given to the
extension of the dynamic range. The wide dynamic range
is achieved by an accurate fringe subdivision based on an
enhanced ellipse-specific fitting of the scattered Lissajous
curve and by increasing the total displacement using the
quadrature-detection technique. The common periodic de-
viations, i.e., the unequal AC amplitudes, the DC offsets,
and the lack of quadrature are determined and reduced by
data processing based on an ellipse-specific, least-squares
fitting to obtain nanometric accuracy. The performance of
the described interferometer is demonstrated through the
measurement of high-amplitude and high-frequency laser-
induced ultrasound.

1 Introduction

Several measurements of displacement [1, 2] demand a wide
dynamic range. This dynamic range is defined as the total
displacement (which can be reached at a given resolution)
divided by the resolution. Thus, to have a wide dynamic
range, the resolution has to be improved and the total dis-
placement extended. The resolution can be improved by a
uniform fringe subdivision, while the total displacement can
be increased by employing the quadrature detection. When
laser interferometry is used for displacement measurements,
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the limiting resolution is dictated by the photon shot noise
[3].

A wide dynamic range is achieved with homodyne
quadrature laser interferometers (HQLIs) [4, 5]. HQLIs
are a special extension of arm-compensated Michelson in-
terferometers (ACMI) [6] that feature a dynamic range
of less than 104. The considerably improved dynamic
range of HQLIs over ACMIs is obtained by employing the
quadrature-detection technique, which extends the total dis-
placement while preserving the resolution. Here, the quadra-
ture detection is achieved using a stable, linearly polarized
laser, and adding an additional octadic-wave plate and a po-
larizing beamsplitter to obtain two orthogonally polarized
interference signals in phase quadrature that are detected by
two photodiodes. These two signals provide the means to
measure the displacements with a sub-nanometer resolution
and constant sensitivity over displacements of at least 1 mm.
If the index of refraction is further compensated by measur-
ing the temperature, pressure, humidity, and carbon dioxide
content using empirical equations [7], displacements of al-
most 0.1 m can be measured with an accuracy of 1 nm [8].

This paper presents the simplest modification of the
ACMI—the single-pass, two-detector homodyne quadrature
laser interferometer. It describes the operation of an ideal
and practical realization of the HQLI. The common nonlin-
earities that reduce the accuracy by introducing the fringe-
periodic errors in the measured displacement are discussed
and effectively corrected using the technique first intro-
duced by Heydemann [9], but employing the recently de-
veloped fitting method given by Harker et al. [10]. This
novel data processing based on a special, ellipse-specific,
least-squares-fitting algorithm features a robust and stable
fringe subdivision with nanometric resolution. Since our
HQLI uses fast, 200-MHz photodiodes, it is applicable for
the measurements of motion induced by high-intensity laser
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Fig. 1 (a) Schematic top view of the ACMI. The interferometer is
locked to the most sensitive point using a 1-kHz low-pass filter (LPF),
the proportional integral-derivative controller (PID), and the reference
mirror (RM) attached to the piezoelectric transducer (PZT). The mo-
tion of the measuring surface is detected by a single photodiode (PD).
(b) The HQLI consists of: the stabilized (λ = 632.8 nm; amplitude sta-
bility over 1 min <0.2% and amplitude noise (0–10 MHz) <0.2%) and

linearly polarized He–Ne laser beam at 45◦, the measuring surface, the
RM, the octadic-wave plate (OWP), the non-polarizing beamsplitter
(NBS), the polarizing beamsplitter (PBS), the two photodiodes measur-
ing the x-polarized (PDx), and the y-polarized (PDy) light. The time-
dependent normal displacement u(t) is encoded in the optical phase
p(t). The high-amplitude ultrasound is induced by a pulsed Nd:YAG
laser

pulses. We give a concise comparison between the common
ACMI and the HQLI. Besides the theoretical comparison,
their performance is examined experimentally by monitor-
ing the high-amplitude and high-frequency laser-induced ul-
trasound on an aluminum plate.

2 Ideal homodyne quadrature laser interferometer

We will first shortly review the limitations of the Michel-
son interferometer (MI), which is schematically illustrated
in Fig. 1a. In the case of an ideal MI, the time-dependent out-
put voltage signal x(t) taken from the photodiode PD varies
as a harmonic function (see Fig. 2b) if the measuring sur-
face moves uniformly along the path of the laser beam. As-
suming that the photodiode has a linear response, the ideal
interference signal with perfect visibility has the following
form:

x(t) = V0

2

(
1 + sinp(t)

) = V0

2

(
1 + sin

(
4πu(t)

λ

))
, (1)

where p is the optical phase difference between the beams
from separate arms from which the displacement u =
λ/(4π)p is inferred. V0 is the output photodiode voltage
if the whole laser light of wavelength λ was collected by a
single photodiode.

A more general form of the interference signal can be
written as

x = x0 + Ax sinp. (2)

Here, x0 stands for the DC offset and Ax for the AC ampli-
tude. Ideally, x0 = Ax = V0/2, but for several reasons, such

as unequal beam powers and unequal wave-front curvatures
in the returning beams from the reference and the measure-
ment arm, the visibility is Ax/x0 < 1. The sensitivity of MI

S = dx

du
= 4πAx

λ
cosp (3)

changes with the optical phase p, which is an undesired
property of the MI. Its largest value Smax = 4πAx/λ corre-
sponds to the steepest slope in the interference curve, which
occurs midway between the maximum and the minimum of
the detected signal. With a typical AC amplitude of about
1 V, the highest sensitivity is 20 mV/nm.

A displacement of ±λ/16 from the point of best sensitiv-
ity (see the gray-shaded region in Fig. 2) already degrades
the sensitivity by about 30%, whereas at ±λ/8 from the
point of best sensitivity, the signal of the MI reaches the fully
constructive/destructive interference (the peaks and troughs
in Fig. 2b). Here, the MI is insensitive to nanometric dis-
placements.

The optical phase is given by

p(t) = arcsin
x(t) − x0

Ax

. (4)

It appears that the AC amplitude Ax = (xmax − xmin)/2 and
the DC offset x0 = (xmax + xmin)/2 have to be determined
before the measurements are made if the displacement is not
long enough that the extrema xmax and xmin of the inter-
ference are reached. In this case, a synthetic displacement
surpassing one fringe must be accomplished prior to the
measurements to acquire the normalization parameters Ax

and x0.
A MI is used either to count interference quanta—

fringes—or to measure subtle subfringe displacements in
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Fig. 2 The measurement of the 500-nm-long uniform displacement of
a mirror mounted on a piezoelectric transducer using HQLI. (a) HQLI
quadrature signals x and y. (b) A single signal of MI. It can only be
used to monitor a displacement shorter than λ/8 if it is locked mid-
way between the maximum and minimum of the interference fringe,
as is depicted with the gray-shaded region. (c) The linear displacement
obtained from the HQLI quadrature signals x and y

the nearly linear range ±λ/16 from the point of the highest
sensitivity. In the first case, the resolution is poor, namely
λ/2, while in the second case, the total displacement is lim-
ited to <λ/8.

The limiting resolution of the detected displacement due
to quantum laser amplitude noise (photon shot noise), which
is dominant over the detector noise if the laser power is
about 1 mW, is given by [3, 11]

umin = λ

4π
pmin = λ

4π

√
2hc�f

ληPL

, (5)

where h is Planck’s constant, c is the speed of light in a
vacuum, �f is the measurement bandwidth, η is the detector
quantum efficiency, and PL is the output power of the laser
beam of wavelength λ. The smallest detectable displacement
umin using a He-Ne red light of λ = 632.8 nm, and a typical

quantum efficiency of about η = 0.8, can be calculated using
the following equation:

umin = 4.5 × 10−5

√
�f

PL

pm J1/2. (6)

Given that the total displacement of MI is λ/8, the dynamic
range is

DNR = π

2

√
ληPL

2hc�f
. (7)

Again, this can be reduced to

DNR = 1.8 × 109

√
PL

�f
J−1/2, (8)

for λ = 632.8 nm and η = 0.8.
In applications such as the measurement of laser-induced

mechanical waves on samples with low reflectivity, the
bandwidth can be as high as 200 MHz and the maximum
laser power reaching the photodiodes about 10 µW, yield-
ing the minimum resolvable displacement of 0.2 nm and a
dynamic range of only 4 × 102.

Due to long-term mechanical vibrations and drift, the
starting point of a MI may be anywhere on its interference
curve. If high-frequency nanometric displacements, such as
laser ultrasound [2, 12–14], are to be measured with the
MI, the interferometer has to be locked to the point of the
highest sensitivity by a feedback loop that compensates for
low-frequency ambient displacements. There are many ways
to realize this compensation [13]. In our ACMI, we made
use of the low-frequency part (<1 kHz) of the signal and
fed it to the proportional integral-derivative (PID) controller.
The controller’s output is used to drive the PZT that holds
the mirror in the reference arm. A schematic of such a
PID-controlled arm-compensated MI (ACMI) is shown in
Fig. 1a. A detailed description of the ACMI can be found
elsewhere [6]. It should be noted that the low-frequency
components of the measured displacement are not visible
in the detected signal, but can, nevertheless, be reproduced
by monitoring the feedback signal delivered to the PZT.

The main idea in overcoming the drawback of the MI is
to have two signals that are phase-shifted by 90◦. In prac-
tice, this means that if one signal is insensitive to displace-
ment, the other is at the point of the highest sensitivity and
vice versa. We will show that switching between two such
signals in phase quadrature does not have to be discrete. It
can be done in a smooth fashion that preserves the overall
sensitivity of the HQLI, shown in Fig. 1b. The detailed op-
eration of an ideal HQLI is theoretically described in [4].
In short, two phase-shifted signals are obtained by separat-
ing two perpendicular polarizations with a polarizing beam-
splitter, where an additional optical path length of a quarter



578 T. Požar et al.

Fig. 3 The Lissajous circle corresponding to the optimally aligned
HQLI’s photodiode signals in Fig. 2a. The signals possess DC offsets,
have matching AC amplitudes and are in exact quadrature

wavelength in one polarization is achieved by a double-pass
through a properly rotated octadic-wave plate placed in the
reference arm. Effectively, this yields two ideal signals of
the form

x = V0

4
(1 + sinp), (9a)

y = V0

4
(1 + cosp). (9b)

Figure 2 shows the displacement measurement of a mir-
ror mounted on a linearly driven PZT. A pair of voltage
signals in quadrature obtained with the HQLI is shown in
Fig. 2a, while Fig. 2b shows a single photodiode response
for the MI. Apart from its higher amplitude, this MI signal
is similar to the x-signal of the HQLI. In contrast to the MI,
which loses linearity and sensitivity when the measured dis-
placement exceeds λ/8 (the gray-shaded area in Figs. 2b and
2c), the HQLI has a constant sensitivity. The displacement
in Fig. 2c was obtained with the HQLI. When the HQLI’s
signals have equal AC amplitudes and are in perfect quadra-
ture, the Lissajous representation of these signals forms a
circle, as shown in Fig. 3.

The vector (x, y) draws out a full circle—the Lissajous
figure of the signals x and y—if the optical phase p changes
by more than 2π (see Fig. 3). Thus, one revolution of the ro-
tating vector path corresponds to a phase change of 2π . This
is equivalent to a displacement by λ/2 of the measuring sur-
face or one fringe, so the measurement of the displacement
becomes possible by following the phase of the rotating vec-
tor. As the measuring surface moves forward (toward the

NBS), the vector rotates in the counterclockwise direction.
If it moves backward (away from the NBS), the vector ro-
tates in the clockwise direction. The direction of motion is
therefore easily discernable because in one direction the sig-
nal x leads the signal y, while in the opposite direction the
role of the signals is interchanged.

In contrast to the MI, the sensitivity of the HQLI with
ideal signals is constant

S =
√(

dx

du

)2

+
(

dy

du

)2

= 4πA

λ

√
cos2 p + sin2 p = 4πA

λ
(10)

and equal to one half of the highest sensitivity of the MI
[15].

3 HQLI in high-amplitude laser ultrasonics

We will first explain how our practical realization of the
HQLI efficiently solves the scale nonlinearity and later
demonstrate its performance on the measurement of high-
frequency and high-amplitude laser-induced ultrasound.

Although the HQLI is optimally aligned, in a practical re-
alization the signals are still slightly distorted. Their general
form is written as

x = x0 + Ax sin(p + p0), (11a)

y = y0 + Ay cosp. (11b)

The parameters {x0, y0,Ax,Ay,p0}, known as the com-
mon nonlinearities, are: the DC offsets (x0, y0), the AC am-
plitudes (Ax,Ay) and the lack of quadrature p0. They are
found in every HQLI and must be effectively determined
and corrected by an online/offline signal processing [16–21]
to achieve a better accuracy.

When the common nonlinearities are taken into account,
the ideal Lissajous circle shown in Fig. 3 is deformed into an
ellipse (see Figs. 4 and 5). The sensitivity is no longer con-
stant, but exhibits a fringe-periodic deviation from the con-
stant value. The circle is distorted into an ellipse if the AC
amplitudes are not equal and/or the signals lack the quadra-
ture.

Figure 4 shows the displacement measurement of a mir-
ror mounted on a linearly driven PZT. In this case, the HQLI
was intentionally misaligned, so that its signals have un-
equal AC amplitudes, but are in perfect quadrature. The ratio
between the AC amplitudes, shown in Fig. 4a, is Ax/Ay =
1.72. The measured displacement for this case is shown in
Fig. 4b with the green curve. The black curve in Fig. 4b
shows the reference displacement, measured with a per-
fectly aligned interferometer. The comparison between the
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Fig. 4 The measurement of the 500-nm-long uniform displacement
with intentionally misaligned HQLI. (a) The HQLI photodiode signals
with subtracted DC offsets are in quadrature but have unequal AC am-
plitudes (Ax/Ay = 1.72). (b) The measured displacement (the green
line) and the reference displacement (the black line) that is obtained
by the perfectly aligned HQLI. (c) The Lissajous ellipse showing the
flattening of an ideal circle due to the unequal AC amplitudes

measured and the reference displacement clearly shows a
two-cycle-per-fringe periodic displacement-error. The cor-
responding Lissajous curve of the HQLI with unequal AC
amplitudes is shown in Fig. 4c. In this case, the axes of the
ellipse have different lengths, but remain aligned with the x-
and y-axis.

To show the displacement error due to the imperfect
quadrature, we measured a linear displacement using the
HQLI whose signals have equal AC amplitudes, while they
lack the quadrature (p0 = 23.4◦). The corresponding mea-

Fig. 5 The measurement of the 500-nm-long uniform displacement
with intentionally misaligned HQLI. (a) The HQLI photodiode signals
with subtracted DC offsets lack the quadrature (p0 = 23.4◦) but have
equal AC amplitudes. (b) The measured displacement (the green line)
and the reference displacement (the black line) that is obtained by the
perfectly aligned HQLI. (c) The Lissajous ellipse showing the distor-
tion of an ideal circle due to the lack of quadrature

sured displacement obtained with the intentionally mis-
aligned HQLI is shown with the green curve in Fig. 5b.
Again, the black curve in Fig. 5b shows the reference dis-
placement, measured with a perfectly aligned interferome-
ter. In the case of the lack of quadrature, the Lissajous curve
distorts the circle into the ellipse, shown in Fig. 5c. When the
AC amplitudes are equal but the signals are not in quadra-
ture, the corresponding Lissajous curve is an ellipse with
unequal axes-lengths whose orientations are ±45◦ with re-
spect to the abscise.
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The illustrated nonlinearities are intentionally exagger-
ated so that their effect on the displacement error is easily
distinguishable in Figs. 4 and 5. In practical arrangements,
it is desirable that the nonlinearities are removed by a proper
alignment of optical components [15, 22]. However, resid-
ual common nonlinearities are still present. Although they
are significantly smaller, they still have to be corrected by
an appropriate signal processing to maximize the resolution.

In the ideal case, the optical phase is obtained by the basic
unwrapping equation [23]:

p = arctan
x

y
+ mπ and m = 0,±1,±2, . . . . (12)

Inserting the signals that include the common nonlinear-
ities (11) into (12) gives rise to a second-order, two-cycle-
per-fringe periodic error in the calculated displacement. To
correct this periodic error, we need to obtain the parameters
{x0, y0,Ax,Ay,p0} from the measured signals and then in-
sert them into the modified unwrapping equation

p = arctan

(
cos−1 p0

Ay

Ax

x − x0

y − y0
− tanp0

)
+ mπ. (13)

According to Heydemann [9], the most convenient way
to obtain the set of nonlinearities {x0, y0,Ax,Ay,p0} is to
transform the signals from their parametric form (10) into
an implicit form

ax2 + 2bxy + cy2 + 2dx + 2fy + g = 0 (14)

with the conic coefficients {a, b, c, d, f, g} by removing the
phase p from the parametric equations. The reason behind
this transformation lies in the fact that fitting elliptically
scattered data to obtain the parameters {x0, y0,Ax,Ay,p0}
is computationally less expensive when they are represented
in the general conic (14). A good balance between the ac-
curacy of the fit and the computational efficiency is given
by the least-squares fitting method, which is based on mini-
mizing the algebraic distance. Our data processing employs
the ellipse-specific least-squares fitting (ESF) developed by
Harker et al. [10]. In comparison to the traditional least-
squares fitting methods [7, 9, 16, 17, 19–21], such a process-
ing of the HQLI signals provides nanometric accuracy of the
interferometer, provided the data draws merely a quarter-arc
of an ellipse. In addition, due to the special quadratic con-
straint imposed on the conic coefficients, this method never
returns nonellipse conics, such as a hyperbola. This makes
the fitting more robust. This method is also very stable, be-
cause the data is first normalized (scaled and mean-free).
Moreover, the matrix computation effort is reduced by ma-
trix partitioning, which speeds up the fitting.

The above described signal processing and the fast,
200-MHz photodiodes enable measurements of laser-in-
duced high-amplitude and high-frequency mechanical mo-
tion. To demonstrate this and to confirm that the developed

HQLI efficiently overcomes the limitations of the ACMI,
we present an example of the epicentral detection of laser
ultrasound in an Al plate.

The experimental setup is shown in Fig. 1. The high-
amplitude ultrasound was induced by a Q-switched Nd:YAG
laser operating at 1064 nm, capable of producing 10-ns-long
pulses with a maximum energy of 300 mJ. The excitation
laser pulse was focused to a 1-mm-diameter spot on the front
surface of an 8-mm-thick aluminum plate. The intensity of
the pulse on the front surface of the aluminum sample was
high enough to surpass the ablation threshold, thus produc-
ing strong, longitudinal, ultrasonic wave propagating pre-
dominantly in the normal direction. To enhance the linear
momentum transfer, the interaction site was covered with
water. The direct laser-induced ultrasound, as well as its re-
flections from the front and the rear surfaces of the plate, was
measured with two interferometric methods: the ACMI and
the HQLI. The beams of the interferometric and the excita-
tion laser were aligned, thus forming the epicentral position.

The rear-surface displacement shown in Fig. 6a is ob-
tained from the 200-MHz HQLI signals using the described
data processing. After tL = 1.265 µs, i.e., the time-of-flight
of the longitudinal wave in an 8-mm-thick Al plate, the rear
surface experiences a sudden forward motion due to the first
arrival of the compressional ultrasonic wave. This surface
motion is detected as the first peak, labeled L1 in Fig. 6a.
Due to the epicentral position, the other reflections, L3, L5,
and L7, are detected with the time period of 2tL.

The shaded region in Fig. 6a is presented in Fig. 6b in
greater detail. The raw signal measured by the ACMI and
stabilized to 0.38 V is shown in Fig. 6c. The dashed horizon-
tal lines in Fig. 6b separate the graph into λ/4-displacement
bands. Within each band, the slope-sign of the displacement
(sign of velocity) is either equal (the solid curve) or opposite
(the dot-dashed and the dashed curves) with respect to the
slope-sign of the ACMI photodiode voltage signal shown in
Fig. 6c. Here, the corresponding half-fringe (λ/4) lines lie
at Vmin = 0.13 V and Vmax = 0.93 V.

The first arrival of the longitudinal wave (L1) is detected
as a 330-nm sharp peak at tL. As seen in Fig. 6c, its am-
plitude cannot be determined using a single photodetector
as in ACMI, because such an interferometer is insensitive
to displacements near Vmax and Vmin. Therefore, we cannot
distinguish whether the first arrival is indeed a single peak
or whether it is composed of multiple peaks, since the direc-
tion of the displacement is indiscernible near the maximum
and minimum of the detected signal. The photodiode voltage
changes slope-sign in two cases: at the peaks and troughs of
the interference or when the measured surface changes the
sign of the velocity.

At the first arrival of the compressional high-amplitude
ultrasonic wave, the measured surface experiences a sud-
den forward motion and reaches a velocity that exceeds the
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Fig. 6 Comparison between the
ACMI and the HQLI during the
measurement of the
high-amplitude and
high-frequency laser-induced
ultrasound. (a) The
displacement of the rear surface
of an 8-mm-thick Al plate
measured with the HQLI.
(b) The magnification of the
shaded region in (a). (c) The
photodiode signal obtained with
the ACMI that corresponds to
the measured displacement
in (b)

frequency range of the photodiodes. When light modulation
with frequencies higher than 200 MHz is detected, the am-
plitudes Ax,y of the photodiode signals are reduced. This
effect is clearly visible in the inset in Fig. 6c. The encir-
cled numbers indicate the positions where the displacement
crosses the λ/4-displacement bands. Here, the HQLI cor-
rectly detects that the velocity does not change sign, even
when its raw signals do not touch the lines at Vmax and Vmin

due to high frequencies (the encircled numbers 1 and 2). The
velocity of the backward motion is sufficiently reduced so
that the photodiode signal crossing the λ/4-displacement-
band (encircled number 4) touches the voltage maximum
as expected when the HQLI operates within the frequency
bandwidth. The number 3 indicates the change of sign in the
velocity, which is correctly detected by the HQLI.

It is known that the ACMI cannot distinguish the direc-
tion of motion once its signal reaches the voltage extrema
and it must be used within the frequency bandwidth of the
detector. On the other hand, the quadrature detection method
used in the HQLI is capable of detecting ultrafast mo-
tion exceeding the bandwidth of the photodiodes, provided
that both photodiodes have the same gain and frequency-
response characteristics. This follows from (13), since in this
case the values of x0, y0 and p0 remain unchanged, while
the amplitudes Ax and Ay are proportionally reduced, so
that the ratio Ay/Ax is also unchanged.

4 Conclusion

In summary, we have presented a single-frequency laser in-
terferometer featuring a wide dynamic range of 106, a con-
stant sensitivity, a bandwidth of 200 MHz and a nanometric
resolution. This interferometer is based on quadrature detec-
tion and uniform fringe subdivision. The quadrature of two
orthogonally polarized interference signals in the developed
interferometer is achieved by an octadic wave-plate in com-
bination with the linearly polarized laser output and the po-
larization beamsplitter. To subdivide the fringe linearly, we
determined and corrected the periodic deviations, which are
common to all homodyne quadrature laser interferometers,
with a special data processing based on extracting the para-
meters describing the nonlinearities with an ellipse-specific,
least-squares fitting. This interferometer proved to be a use-
ful tool for measuring high-amplitude ultrasonic waves on
moving objects, nanometrology and the calibration of vibra-
tion and shock transducers in the subfringe stroke range.
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19. P. Křen, Int. J. Nanotechnol. 4, 702 (2007)
20. C.M. Wu, C.S. Su, G.S. Peng, Meas. Sci. Technol. 7, 520 (1996)
21. T. Usuda, M. Dobosz, T. Kurosawa, Nanotechnology 9, 77 (1998)
22. J. Ahn, J.A. Kim, C.S. Kang, J.W. Kim, S. Kim, Opt. Express 17,

23299 (2009)
23. T. Usuda, T. Kurosawa, Metrologia 36, 375 (1999)


	A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer
	Abstract
	Introduction
	Ideal homodyne quadrature laser interferometer
	HQLI in high-amplitude laser ultrasonics
	Conclusion
	References


