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Abstract: The influence of quadrature phase shift on the measured 
displacement error was experimentally investigated using a two-detector 
polarizing homodyne laser interferometer with a quadrature detection 
system. Common nonlinearities, including the phase-shift error, were 
determined and effectively corrected by a robust data-processing algorithm. 
The measured phase-shift error perfectly agrees with the theoretically 
determined phase-shift error region. This error is systematic, periodic and 
severely asymmetrical around the nominal displacement value. The main 
results presented in this paper can also be used to assess and correct the 
detector errors of other interferometric and non-interferometric 
displacement-measuring devices based on phase-quadrature detection. 
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1. Introduction 

Detection methods based on two or more signals in phase quadrature allow nano-resolution 
and high-dynamic-range displacement measurements with a constant sensitivity [1]. The 
quadrature signals can be obtained in various laser interferometers [2–5] as well as in other 
types of displacement-measuring systems, for example, optical encoders [6]. A great interest 
for accurate displacement measurements with sub-fringe accuracy arises from many 
interesting applications, such as: measurements of high-amplitude ultrasound on stationary 
and moving objects [7], metrology analysis including scanning probe microscopes [8], and 
applications based on phase-shifting interferometry [5,9]. 

The precision and accuracy of a displacement measured with quadrature-detection systems 
are limited by a set of errors [1,10,11] that generally arise from mechanical, optical, and 
electric sources. When the phase shift between the detected signals deviates from the ideal 
90°, the phase-unwrapping procedure [12] generates an error in the displacement. To analyze 
this error experimentally, other errors (e.g., unequal gains, zero offsets, deviations from the 
harmonic signal shape, etc.) need to be eliminated or corrected. This can be most conveniently 
realized in a homodyne quadrature laser interferometer (HQLI) with two orthogonally 
polarized signals [2]. 

In a HQLI, the phase shift can be continuously varied by rotating a wave plate. However, 
the rotation of the wave plate also produces unequal signal amplitudes and different zero 
offsets, both of which can be corrected with the appropriate signal processing. Additionally, in 
a HQLI, the deviations from the harmonic signal shape [6] are minimal [11], since the 
intensities on the photodiodes vary harmonically due to the inherent physical properties of the 
interferometer. 

The three commonly encountered systematic nonlinearities of a detector—unequal AC 
amplitudes, DC offsets, and quadrature phase-shift error—are typically all determined and 
corrected together using a traditional elliptical fitting technique based on a least-squares 
method [10,13,14]. Because the main aim of our study was to present the influence of 

quadrature phase shift on the measured displacement error, we separated the phase-shift error 

from the other two errors with specially developed software based on the processing algorithm 
described in this paper. Moreover, the separation of errors reduces the number of least-squares 
fitting parameters from four (two DC offsets, ratio of AC amplitudes, and phase-shift) to only 
one, i.e., phase-shift. Our software makes it possible to acquire the raw signals, process the 
data, and also to estimate and correct the common detector errors. Since the data processing 
includes only one least-squares fitting parameter it proved more robust and faster than fitting 
the ellipse in the traditional way. When a real-time correction of the nonlinearities is needed, 
the data processing described here can be implemented in a suitable digital or analogue signal-
processing module [15,16]. 

This paper investigates the displacement error due to the lack of quadrature with a two-
detector homodyne laser interferometer. The performance of the HQLI operating with an 
arbitrary phase shift is described using Jones calculus. We present robust data processing to 
obtain the error-corrected displacement, where the phase-shift error is separated from the 
other nonlinearities. The quadrature phase-shift error is measured, the theoretical error region 
is determined and the error is qualitatively and quantitatively evaluated. The main results are 
discussed and the applicability for other quadrature-detection systems is proposed. 

2. Homodyne quadrature laser interferometer 

There are two basic variants of the HQLI with regard to the number of detected signals. A 
balanced scheme with four detectors uses all the available laser light, is insensitive to laser 
output power drifts, has twice the number of detectors, compared to the two-detector variant, 
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and more than twice the number of optical components [3,17]. However, several errors in the 
detected displacement may arise from misaligned or imperfect optical components [11]. With 
this in mind we realized an experimental two-detector HQLI, trying to reduce the possible 
errors (polarization-mixing cross talk [11,14], ghost images, waveform distortions, etc.) that 
originate from the imperfect optical components and contribute to the final error in the 
measured displacement. We set such a homodyne quadrature interferometer so that the phase 
shift can be controlled only by the rotation of the wave plate, except for the constant 
contribution of the polarization-sensitive light reflections at the beamsplitter explained in 
section 4. Compared to the laser-power insensitive four-detector scheme, the two-detector 
variant needs an additional photo-detector [18] or a stabilized laser source [1]; we employed 
the latter. A detailed comparison between the four- and two-detector scheme can be found 
elsewhere [3]. 

 

Fig. 1. Schematic top view of the HQLI. The exiting light from the stabilized He-Ne laser is 
linearly polarized at 45° in the x-y plane. The beamsplitter (BS) evenly splits the beam into the 
reference and measurement arms. The octadic-wave plate (OWP) and high-reflectivity (HR) 
mirror are placed in the reference arm. The HR mirror in the measurement arm is driven by a 
piezoelectric transducer (PZT). The polarizing beamsplitter (PBS) transmits the x-polarization 
and reflects the y-polarization. An optically narrow band-pass filter (BPF) is placed before the 
photodiodes labeled PDx and PDy. 

The top view of the HQLI setup is schematically illustrated in Fig. 1. The cylindrical head 
of the polarized and stabilized He-Ne laser (λ = 632.8 nm; amplitude stability over 1 min < 
0.2% and amplitude noise (0 – 10 MHz) < 0.2%) is rotated so that the linearly polarized beam 
exiting the laser forms a 45° angle with respect to the plane of the optical table (x-plane). This 
polarization can be decomposed into two orthogonal polarizations with equal intensities, one 
in the plane of the paper (x-axis) and the other perpendicular to it (y-axis). The beamsplitter 
(BS) evenly splits the beam into the reference and measurement arms. The first transition 
through the octadic-wave plate (OWP), which is placed in the reference arm, gives rise to the 
45° (λ/8) phase difference between the orthogonal polarizations. The beam is then reflected 
from a high-reflectivity (HR) mirror and another 45° are added on the returning passage 
through the OWP. The orthogonal polarizations in the measurement arm experience an equal 
phase shift δ(u) due to the movement of the measuring surface, which is driven by a 
piezoelectric transducer (PZT). The light in phase opposition is not detected since it returns 
towards the laser. The PBS transmits the x-polarization and reflects the y-polarization. An 
optically narrow band-pass filter (BPF) is placed before the photodiodes labeled PDx and PDy 
to attenuate the scattered light at different wavelengths. 

The operation of a HQLI with two orthogonally polarized signals with an arbitrary phase 
shift can be conveniently described using Jones calculus [3,4]. Each optical component in the 
interferometer is represented by a matrix. Multiplying the matrices to the left mathematically 
modifies the electric field vector. This corresponds to the light passing through the optical 
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components. Normalizing the electric field amplitude to unity, the electric field vector of the 
linearly polarized light E and the ideal optical components found in the HQLI can be written 
as: 
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Here, bs corresponds to the 50%-50% BS, pbsx to the PBS’s transmitted output with the 

polarization in the x-plane, pbsy to the reflected output with the polarization in the 
perpendicular direction (y-plane), opd is the phase factor that accounts for the optical phase 
difference between the two arms arising from the displacement of the measuring surface, and 
owp is an octadic-wave plate that can be rotated by an arbitrary angle φ, measured from the y-
plane to the OWP’s fast axis. 

Two interfering beams with polarizations in the x-plane, one from the reference arm and 
the other from the measurement arm, reach the photodiode PDx. Similarly, the perpendicular 
polarizations coming from both arms illuminate the photodiode PDy. Ideally, the interference 
signals on the photodiodes are shifted by 90°, which can be achieved with a properly rotated 
OWP. The measured displacement u is encoded in the phase δ(u) = 4πu/λ, where λ is the 
wavelength of the interferometric laser. The electric fields arising from the reference (index r) 
and the measurement (index m) arms can be calculated using the Jones matrix formalism as: 

 
, ,

( ) ( ) (45 ),
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pbs bs opd bs= ⋅ ⋅ ⋅ ⋅ °E E  

 
The interference of the two beams on the PDx and PDy is calculated using 

 
†

, 0 , , , ,
( ) ( )

x y rx ry mx my rx ry mx my
I I= + ⋅ +E E E E  

and this yields the corresponding intensities, Ix and Iy, as a function of the optical phase 
difference δ and the angle of the OWP rotation φ. The dagger denotes the conjugate transpose 
and I0 stands for the laser output intensity. The intensities on the photodiodes are: 

 ( )( )0( , ) 4 sin 4 2 2 cos sin (cos 2 sin 2 ) ,
16

x

I
I δ ϕ ϕ δ δ ϕ ϕ= + + − +   (1a) 

 ( )( )0( , ) 4 sin 4 2 2 cos sin (cos 2 sin 2 ) .
16

y

I
I δ ϕ ϕ δ δ ϕ ϕ= − + + −   (1b) 

Under ideal conditions, when the fast axis of the OWP is perpendicular to the x-plane, the 
signals are in phase quadrature: 

 ( ) ( )0 0( 45 , 0 ) 1 cos    and   ( 45 , 0 ) 1 sin .
4 4

x y

I I
I Iδ δ δ δ− ° ° = + − ° ° = +   (2) 

The influence of φ on the detected displacement will be discussed later. The displacement 
of the measuring surface along the line of the laser beam can be derived from the ideal 
quadrature signals Ix and Iy (Eq. (2)) by subtracting the DC offset as: 
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The integer m has to be chosen correctly so that the function u(t) becomes continuous. 

3. Signal processing 

The phase-modulated intensities on the photodiodes, Ix and Iy, are detected as the photodiode 
output signals, Vx(t) and Vy(t), which were equidistantly sampled by a 500-MHz oscilloscope 
with a sampling capacity of 2 MS per channel. The sampling is limited either by the 
oscilloscope’s sampling rate or by the frequency response of the photodiodes. Assuming that 
the acquired (raw) signals take the following distorted form 

 
, 0, 0 , ,

4
( ( )) cos ( )

x y x y x y xoff yoff
V u t V u t V

π
δ

λ
 = − + 
 

  (4) 

they have to be corrected so that the phase unwrapping (Eq. (3)) yields an accurate 
displacement. Here, Vx0,y0 stands for the AC amplitudes of the detected voltage, δx,y are the 
corresponding initial phases and Vxoff,yoff are the DC offsets. Vx0,y0 and Vxoff,yoff are constants, 
because we ensured a highly constant laser output power within the acquisition time. A few 
error sources influence only a single parameter in Eq. (4), while, for example, rotating the 
OWP contributes to a change in all the parameters in Eq. (4), as described by Eqs. (1). 

Typical raw signals, acquired from photodiodes, when the piezoelectric transducer (PZT) 
vibrating with a frequency f = 100 Hz harmonically moves the measuring HR mirror by an 
amplitude A = 270 nm are shown in Fig. 2(a). After the raw signals were acquired from 
photodiodes, the data processing was done offline in two steps: in the first place, the acquired 
(raw) signals Vx and Vy were transformed into the processed error-corrected signals sx and sy 
(the arrow from Fig. 2(a) to Fig. 2(b)); this was followed by a phase-unwrapping 
transformation (the arrow from Fig. 2(b) to Fig. 2(c)). 

In the first step we applied a correcting transformation fixing the slight V(I) nonlinearities 
of both photodiodes. The signals were then low-pass filtered, thereby eliminating the 
unwanted high-frequency noise with an adjustable cutoff. The filtered signals were later 
separately normalized according to the maximum and minimum filtered voltage in each 
channel and shifted to eliminate the offsets. This procedure can be expanded to the case when 
the amplitudes Vx0,y0 and the zero offsets Vxoff,yoff vary with time, which cannot be done with 
the standard least-squares fitting methods [10,13,14]. When the displacement is smaller than 
λ/2, the intensity extremes may not be reached, so in this case the raw signals have to be 
normalized and zero-shifted with the values of the extremes obtained before the real 
measurement is performed. The lack-of-quadrature correction was carried out last; it was 
derived from the work of Heydemann [10] and will be described in detail in subsection 3.1. 
After this software-based procedure, we obtained the processed error-corrected signals (Fig. 
2(b)): 

 ( ) cos ( )   and   ( ) sin ( ).
x y

s t t s t tδ δ= =  

 
A Lissajous circle is obtained (Fig. 2(d)) by plotting the vector (sx(t),sy(t)). One revolution 

of the rotating vector path corresponds to a phase change of 2π. This is equivalent to a 
displacement by λ/2 of the measuring surface, so the measurement of the displacement 
becomes possible by following the phase of the rotating vector. As the measuring surface 
moves forward (towards the BS), the vector rotates in the counterclockwise direction. If it 
moves backward (away from the BS), the vector rotates in the clockwise direction. 
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Fig. 2. The data processing of the two photodiode signals in the HQLI measurement of the 
harmonically vibrating mirror (f = 100 Hz, A = 270 nm) mounted on a PZT. (a) Raw signals: 
Vx(t) and Vy(t). (b) Processed error-corrected signals: sx(t) and sy(t). (c) Displacement as a 
function of the time obtained after the unwrapping of the phase. (d) Lissajous figure of the 
processed data: (sx(t),sy(t)). 

In the second step, the displacement (Fig. 2(c)) was determined from sx and sy using a 
phase-unwrapping algorithm depicted in the flowchart in Ref [12]. The transition from the 
forward to the backward motion corresponds to the two crests (or two troughs) of sx and sy 
(the dashed line A in Fig. 2). The opposite transition (the dashed line B in Fig. 2) corresponds 
to the alternating second derivatives of sx and sy. 

3.1 Correction of the quadrature phase-shift error 

Once the photodiodes’ nonlinearities are corrected, the amplitudes are normalized (Vx0,y0 = 1) 
and the zero offsets are set to null (Vxoff,yoff = 0), the only significant remaining error in Eq. (4) 
is the quadrature phase-shift error. Setting δx = 0 and δy = α, the ideal signals sx and sy are 
distorted by the phase-shift error and can be described by 

 cos    and   cos( ) cos sin ,
xe x ye x y

s s s s sδ δ α α α= = = − = +  

where sxe and sye correspond to the preprocessed signals before the phase correction is made. 
Figure 3 shows two measurements of the displacement of the harmonically vibrating 

mirror driven by a PZT. First, the reference measurement ur (the black line) was obtained with 
an adjusted HQLI. Then we rotated the OWP to change the phase shift to α = 117°. An 
inaccurate measurement um performed with a HQLI lacking the phase quadrature is shown as 
the red line in Fig. 3(a). Both measurements were made at the same frequency and 
displacement amplitude of the vibrating mirror (f = 100 Hz, A = 270 nm). 

The signals that are obtained with the adjusted interferometer are in exact quadrature 

( 90α = ° ) and form a Lissajous circle (the black dots in Fig. 3(c)), described by the equation 
2 2

1
x y

s s+ = . In the case of a misaligned HQLI lacking the phase quadrature, the circle is 

deformed into an ellipse-like curve (the red dots in Fig. 3(c)). However, we can determine the 
phase shift α and correct the signals of an inaccurate measurement (sxe and sye) as follows. 
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Fig. 3. The measured displacement of the harmonically vibrating mirror (f = 100 Hz, A = 270 
nm). (a) Displacement as a function of time for the reference measurement ur obtained with an 
adjusted HQMI (the black line), the inaccurate measurement um with a HQMI lacking the phase 
quadrature (the red line), and the software-corrected displacement uc of the inaccurate 
measurement (the blue circles). (b) The Lissajous representation of the signals from which the 
displacements in (a) were derived. (c) The displacement error uerr between the distorted and the 

reference measurement um − ur (the red line) and the one between the software-corrected and 

the reference displacement uc − ur (the blue line). 

Substituting 

    and   ( cos ) / sin
x xe y ye xe

s s s s s α α= = −   (5) 

into the equation of a circle we obtain the equation for an ellipse in the explicit form: 
2 2 2

( ) 2 cos sin
xe ye xe ye

s s s s α α+ − = . Since it is more convenient to fit an implicit function a 

suitable substitution needs to be applied to the equation of an ellipse. With cos
xe

s r θ=  and 

sin
ye

s r θ= , the ellipse is unwound to obtain the distance from the origin r as a function of 

the angle θ. The phase shift α is obtained by fitting the expression 

 ( )
1

2( ) sin 1 cos sin 2r θ α α θ −
= −  

to the transformed data pairs 

 2 2 , arctan
ye

xe ye

xe

s
r s s

s
θ

 
= + = 

 
 

using the method of least squares. Now that α has been determined by the fitting procedure 
the inaccurate data is corrected by inserting α back into Eqs. (5). Thus, the corrected signals 
sxc and syc are obtained (the blue dots in Fig. 3(b)). The corrected displacement uc (the blue 
dots in Fig. 3(a)) was calculated using the phase-unwrapping algorithm on the phase-shift-
corrected data. 

Figure 3(c) shows the displacement error between the inaccurate and the reference 

measurement um − ur (the red line) and the one between the software-corrected and the 

reference displacement uc − ur (the blue line). The maximum displacement error was 
significantly reduced from the original 25 nm to the improved 3 nm. Moreover, the original 
error was periodic and severely unidirectional, while the corrected one is symmetrical around 
zero and without a period. Apart from the purpose of the software error correction, knowing 
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the phase shift between the signals also helps as a guide for the manual adjustment of the 
OWP angle φ. 

The relation between the phase shift α and the angle of the OWP rotation φ is established 
from Eqs. (1) as 

 ( ) arctan(cos 2 sin 2 ) arctan(cos 2 sin 2 ).α ϕ ϕ ϕ ϕ ϕ= − + +   (6) 

 
For the robust realization of a HQLI, a slight deviation from the adjusted angle of the 

OWP should not shift the phase significantly from the ideal 90°. The sensitivity of the phase 
shift on the OWP rotation corresponds to the slope dα/dφ, which can be extracted from Eq. 
(6). In the ideal case, when the phase retardation between the two polarizations is achieved 
only through the OWP, the HQLI’s accuracy is insensitive to slight variations of the OWP 
rotation. However, this may pose a problem if an additional phase shift originates from the 
polarization-sensitive light reflections, such as the reflection at the BS [17]. In the latter case, 
the OWP is used to add the remaining phase shift needed to achieve the phase quadrature, 
which may set the angle of the OWP rotation φ to the point where dα/dφ is large. This effect 
may, therefore, undermine the robustness of the interferometer and should be avoided. 

4. Analysis of the quadrature phase-shift error 

We carried out a detailed theoretical and experimental analysis of the displacement error 
originating from the lack of quadrature. The displacement error uerr is defined by subtracting 
the reference displacement ur from the inaccurately measured one um as 

 ( , ) arctan arctan .
4

ye y

err m r

xe x

s s
u u u

s s

λ
δ α

π

 
= − = − 

 
  (7) 

 
We measured the displacement um of the measuring mirror, mounted on a PZT, at various 

angles of OWP rotation φ, i.e., for different phase shifts α (Eq. (6)). The PZT moved the 
mirror in two distinct modes: harmonic (e.g., the red line in Fig. 4(a)) and triangular (e.g., the 
red line in Fig. 4(b)). The mirror vibrating in harmonic mode had a frequency of 100 Hz and 
an amplitude of 270 nm. The triangular displacement’s frequency and amplitude were 70 Hz 
and 330 nm, respectively. Using the above-described phase-correction algorithm we obtained 
the corrected displacement uc (the black lines in Figs. 4(a) and 4(b)). The difference between 

the measured and corrected displacement um − uc is shown as a green line in Figs. 4(a) and 
4(b). We assumed that this difference equals the displacement error defined in Eq. (6). The 
extremes of the error in Fig. 4(a) are shown as two circles in Fig. 4(c) at α = 43° and the error 
interval is indicated by “error H”. Similarly, the two squares in Fig. 4(c) at α = 140° 
correspond to the error extremes of the triangular mode shown in Fig. 4(b). This error interval 
is indicated by “error T”. The other circles and squares in Fig. 4(c) represent the error 
extremes of the displacement error obtained at various phase shifts for the harmonic and 
triangular modes, respectively. 

Equation (6) shows that the rotation of the OWP produces the phase shift α in the interval 

between −90° and 90°. However, in our case the rotation of the OWP enabled measurements 

of the phase shift in the interval between −36° and 144°, because an additional phase shift of 
54° originates from the polarization-sensitive light reflections at the BS. This phase shift was 
measured by removing the OWP from the HQLI. Its origin was proved by the BS rotation of 
180° around the y-axis (see Fig. 1). After the rotation, the additional phase shift changed the 
sign, indicating that the BS was the only source of this shift. Due to this effect, the measured 
phase-shift interval in Fig. 4(c) exceeds 90°. When the phase shift is smaller than 10° it can no 
longer be determined, because of the extreme distortion of the Lissajous curve. 

The shaded area in Fig. 4(c) displays the error region bounded by the theoretical lines uerrB 
and uerrb (the solid lines in Fig. 4(c)). To calculate the boundaries we need to find the extremes 
of Eq. (7) with respect to δ. Those that give an error which is further away from the zero error 
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are labeled δB, the others, which are closer to the zero error, are named δb. Substituting the 
locations of the extremes back into Eq. (7) gives the two bordering lines: 

 ( ) 1 sin 1
( ) ( ), ;   where   ( ) arccos ,

2 cos
errB err B Bu u

α
α δ α α δ α α

α
 −  = = −  

  
  (8a) 

 ( ) 1 sin 1
( ) ( ), ;   where   ( ) arccos .

2 cos
errb err b bu u

α
α δ α α δ α α

α
 −  = = +  

  
  (8b) 

 
Equation (7) and Eqs. (8) represent a general theoretical result that depends only on the 

wavelength of the interferometric laser. It can also be applied to other quadrature-detection 
systems, such as optical encoders [6], where the constant λ/(4π) in Eq. (7) is replaced by 
p/(2π). Here, p is an arbitrary position period that equals λ/2 for the case of HQLI or λ/n for n-
pass realizations of similar interferometers [12,19]. The results obtained with the HQLI can be 
generalized to other quadrature-detection systems, using the right-hand scale in Fig. 4(c). 
Additionally, the results are also valid when the quadrature-detection method is used to 
measure other quantities that change the optical phase difference. 

 

Fig. 4. The influence of the phase shift on the error in the displacement. (a) The reference (α = 
90°; the black line) and distorted (α = 43°; the red line) harmonic displacements and the 
corresponding error marked as “error H”. (b) The reference (α = 90°; the black line) and 
distorted (α = 140°; the red line) triangular displacements and the corresponding error marked 
as “error T”. (c) The phase-shift displacement error uerr as a function of the phase shift α for λ = 
632.8 nm (left scale) and the arbitrary position period p (right scale). The measured border 
errors of the harmonic (f = 100 Hz, A = 270 nm) and the triangular (f = 70 Hz, A = 330 nm) 
displacements for several values of α are marked as circles and squares. The theoretical error 
borders are calculated from Eqs. (8) (the blue and red lines). 

Linearization of Eq. (7) by retaining the first non-zero term in the Taylor series expansion 
around α = 90° gives 

 ( ) 290 cos
4

λ
α δ

π
° −  

and indicates that the phase-shift displacement error is periodic with respect to δ. This two-
cycle period, i.e., a periodicity of two-cycles as the difference in the optical path length 
changes from 0 to 2π, is p/2 (e.g., λ/4 for HQLI). The two-cycle period is seen in Figs. 3(a), 
4(a) and 4(b). 

Since the measured error extremes denoted by circles and squares perfectly match the 

theoretical curve, the assumption that um − uc = uerr is justified. The results presented in this 
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analysis show: (i) the error region is independent of the amplitude, the frequency and the 
shape of the displacement. It depends only on the laser wavelength or, in general, on the 
position period of quadrature-detection systems; (ii) the error is systematic, periodic and 
asymmetrical around the nominal displacement value; (iii) the described phase-shift 
correction algorithm significantly improves the accuracy, even for large deviations from the 
ideal phase quadrature. However, when the acquired signals lack the quadrature, the 
sensitivity of the HQLI is no longer constant. It is, therefore, necessary to adjust the 
interferometer close to the optimal 90° phase shift. 

5. Conclusion 

We have presented the theory and algorithms that make it possible for us to correct the typical 
errors that limit the precision and accuracy of displacement measurements performed with the 
HQLI. The errors arising from the lack of phase quadrature were analyzed in detail. The 
results obtained from the comparison between the measured and the reference displacements 
show that the presented phase-shift correction algorithm significantly improves the accuracy, 
even for the large deviations from an ideal phase quadrature. 

The phase-shift error region was determined experimentally by comparing the measured 
and phase-shift error-corrected displacement. The results of the experimental assessment 
perfectly matched the theory, thus the described phase-shift correction algorithm is effective. 
The error arising from the lack of phase quadrature is systematic, has a two-cycle period, and 
is asymmetrical around the nominal displacement value, while the error region is independent 
of the amplitude, the frequency and the shape of the displacement. 

The results of the quadrature phase-shift error analysis obtained with the HQLI can be 
applied to other quadrature-detection systems, even those which are not based on 
interferometry. In addition, these results are also valid when the quadrature-detection method 
is used to measure other quantities influencing the optical phase difference. 
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